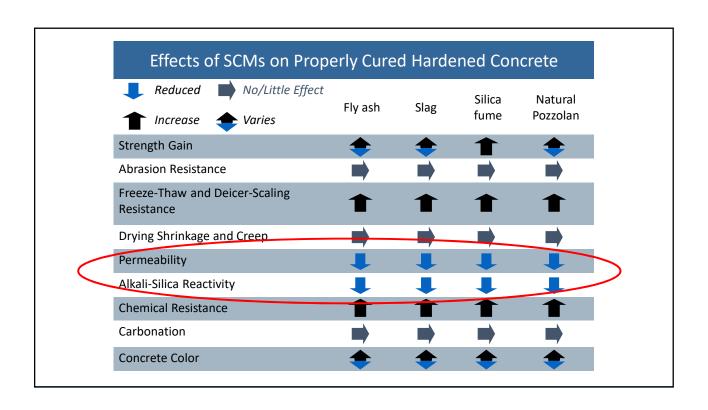
Harvested Fly Ash

Larry Sutter Ph.D., P.E., F.ASTM, F.ACI
Materials Science & Engineering
Michigan Technological University

Michigan Technological University

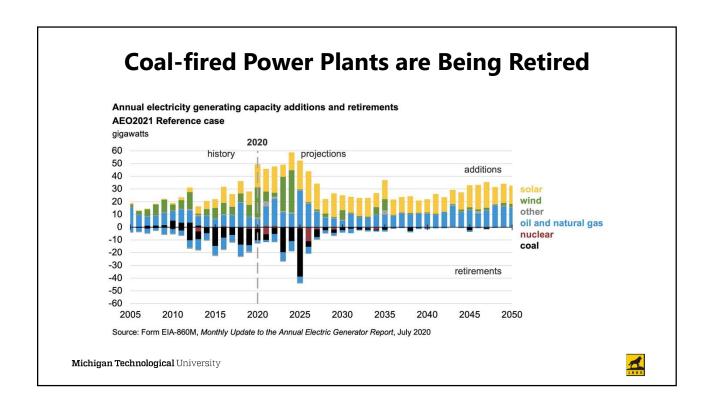


Background

- We expect one key property from concrete: Longevity
- Service demands have increased
 - Use of aggressive deicing chemicals
- We have increased our expectations for reduced environmental impact and lower initial and lifecycle costs
- SCMs assist us in meeting these goals
- Coal Fly Ash is our go-to SCM

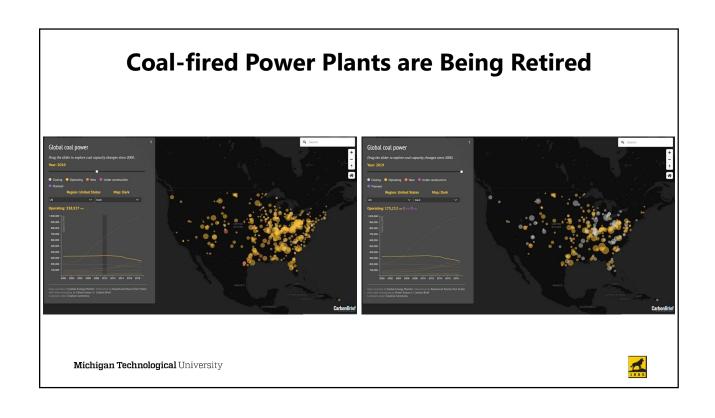
Effects of SCMs on Prope	erly Cure	d Harde	ned Con	crete
Reduced No/Little Effect Increase Varies	Fly ash	Slag	Silica fume	Natural Pozzolan
Strength Gain			1	
Abrasion Resistance	-	-	-	-
Freeze-Thaw and Deicer-Scaling Resistance	1	1	1	1
Drying Shrinkage and Creep	-	-	-	
Permeability	1	1	1	1
Alkali-Silica Reactivity	1	1	1	1
Chemical Resistance	1	1	1	1
Carbonation	-	-		
Concrete Color	_	_	_	_

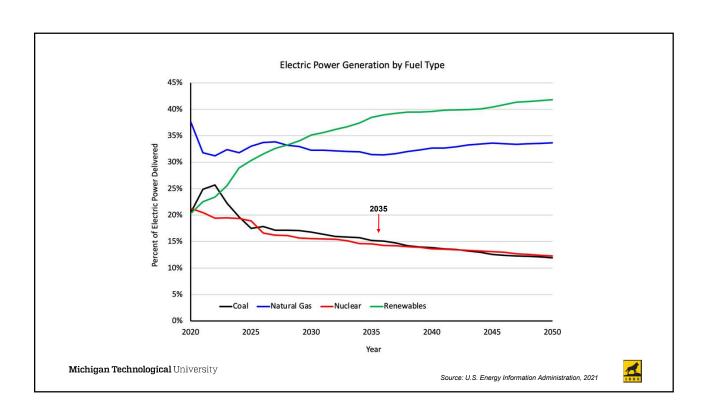
So what's the problem?

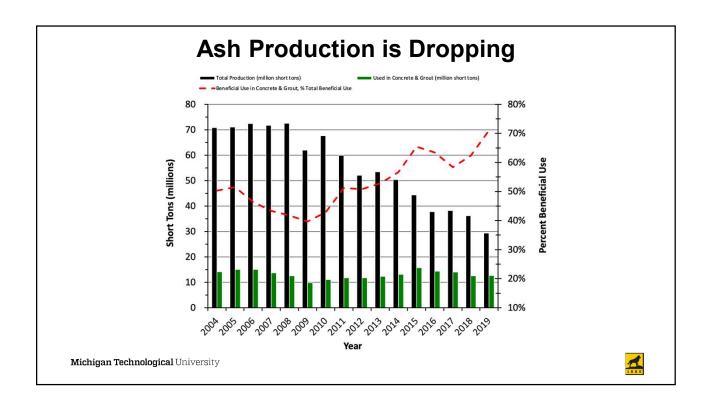

Michigan Technological University

The Problem

- Fly ash supplies are challenged by coal-fired power plant closures and conversions to natural gas
- Fly ash spot shortages have been reported in many U.S. markets
- Concerns center on the fact that no other material is available with the <u>reserves</u> that fly ash historically has provided


Navajo Generating Station


- 2250 megawatt net coalfired powerplant
- Largest coal fired electrical generating station west of the Mississippi
- Produces approximately 500,000 tons a year of Class F fly ash
- Closed 2020


Michigan Technological University

So What's Up With Fly Ash?

- Domestic fly ash production (new production) will continue decreasing over the next 20 years and beyond
 - Domestic use of coal for electrical power generation is predicted to continue decreasing
 - · Fewer plants, running at a higher percentage of capacity
 - Suppliers believe that although total reserves will decrease, the volume of quality ash as a percentage of total production will increase due to dry handling – no more ponding
- Harvested ash from landfills/ponds will become a significant fraction of the total reserves

So What's Up With Fly Ash?

- Domestic fly ash production (new production) will continue decreasing over the next 20 years and beyond
 - Domestic use of coal for electrical power generation is predicted to continue decreasing
 - ~40% capacity factor
 - Fewer plants, running at a higher percentage of capacity
 - Suppliers believe that although total reserves will decrease, the volume of quality ash as a percentage of total production will increase due to dry handling – no more ponding
- Harvested ash from landfills/ponds will become a significant fraction of the total reserves

Michigan Technological University

Harvested Ash

- With diminishing production, ash marketers are turning to land fills & ash ponds to recover fly ash
 - · Most harvested sources are Class F ash
 - Limited research to date on performance of harvested ash
- All harvested sources will require processing
 - Drying
 - Sizing
 - Blending
- Could lead to more uniformity or less depending upon source and degree of processing

Coal Fly Ash

- Benefits
 - Improved workability
 - Decreased heat of hydration
 - Reduced cost
 - Potential increased sulfate resistance and alkali-silica reaction (ASR) mitigation
 - Increased late strength, and decreased shrinkage and permeability

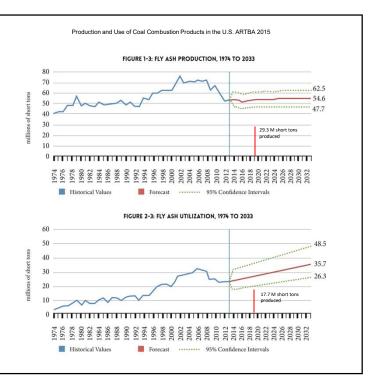
Concerns

- Air-entraining admixture adsorption by residual carbon in the fly ash
- Slow initial strength gain (Class F)
- Fly ash variability
- How reactive is it?

Michigan Technological University

Harvested Coal Fly Ash

- ✓ Benefits
 - ✓ Improved workability
 - ✓ Decreased heat of hydration
 - ? Reduced cost
 - ✓ Potential increased sulfate resistance and alkali-silica reaction (ASR) mitigation
 - ✓ Increased late strength, and decreased shrinkage and permeability


- Concerns
 - ✓ Air-entraining admixture adsorption by residual carbon in the fly ash
 - ✓ Slow initial strength gain (Class F)
 - ? Fly ash variability
 - ✓ How reactive is it?

Harvested Ash

- Significant volumes of highquality fly ash have been disposed
 - Approximately 2000 million short tons produced 1974 - 2013
 - Approximately 650 million short tons used 1974 – 2013
 - ~33% utilization 1350 million short tons disposed
- Not all is recoverable, but a large fraction is

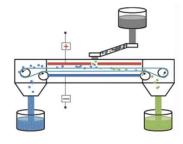
Michigan Technological University

Harvested Ash – Production & Beneficiation

- Harvesting operations vary depending on the source characteristics
 - Standards are being developed to guide harvesting operations
 - ASTM E3183 Standard Guide for Harvesting Coal Combustion Products Stored in Active and Inactive Storage Areas for Beneficial Use
 - Provides a framework for characterization of the site, planning and scoping of a harvesting project, the site design and approval process (as applicable), and the implementation of harvesting
 - Does not address processing the material to meet ASTM C618 or AASHTO M 295

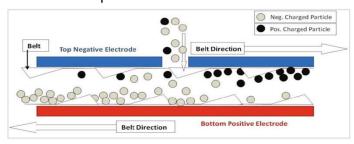
- With very few exceptions, harvested ash will be processed for use in concrete
 - Drying
 - · Needed to meet moisture limits
 - · Screening or air classification, or both
 - Primarily to address comingled bottom ash
 - Grinding (last resort)
 - Bottom ash, cemented particles
 - Post-treatment
 - · Carbon removal or mitigation

Michigan Technological University


Harvested Ash – Production & Beneficiation

- More on carbon removal
 - Many ashes were landfilled originally due to excessive carbon content
 - Beneficiation Methods
 - Triboelectrostatic separation
 - Carbon Burnout
 - Passivation

- More on carbon removal
 - Many ashes were landfilled originally due to excessive carbon content
 - Triboelectrostatic separation


Michigan Technological University

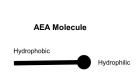
Wirkowska, M., Kratzer, M., Teichert, C. et al. Principal Factors of Contact Charging of Minerals for a Successful Triboelectrostatic Separation Process—Review. Berg Huettenmaenn Monatsh 161, 359–382 (2016). https://doi.org/10.1007/s00501-016-0515-1

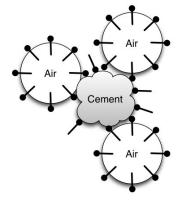
Harvested Ash – Production & Beneficiation

- More on carbon removal
 - Many ashes were landfilled originally due to excessive carbon content
 - Triboelectrostatic separation

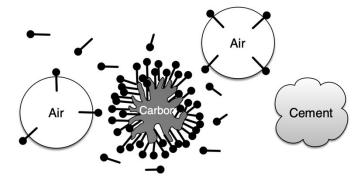
Michigan Technological University

Source: http://www.indmin.com/events/download.ashx/document/speaker/8915/a0ID000000ZwxAGMAZ/Presentation


- More on carbon removal
 - Many ashes were landfilled originally due to excessive carbon content
 - Carbon Burnout
 - · Reburn with coal feed
 - Fluidized bed combustion
 - STAR™ Staged Turbulent Air Flow (SEFA)

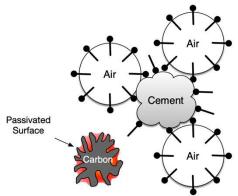

Michigan Technological University

Harvested Ash – Production & Beneficiation


- More on carbon removal
 - Many ashes were landfilled originally due to excessive carbon content
 - Passivation

- More on carbon removal
 - Many ashes were landfilled originally due to excessive carbon content
 - Passivation

Michigan Technological University



Harvested Ash – Production & Beneficiation

- More on carbon removal
 - Many ashes were landfilled originally due to excessive carbon content
 - Passivation

Passivation treatments render the surface of carbon non-adsorptive

Michigan Technological University

1885

- In the near term, harvested ash will be sourced from mono-fills where only fly ash was deposited
- Long term, fly ash co-mingled with other materials will be harvested, requiring more extensive processing
- Mixtures of fly ash and bottom ash will be produced
- Testing primarily reactivity testing will become more important to ensure uniformity

Michigan Technological University

A Little More on Bottom Ash

- A common "concern" expressed inclusion of bottom ash
- Bottom ash is chemically similar to fly ash from the same combustion process, and performs in a similar manner
- Grinding improves bottom ash performance and ground bottom ash has been shown to perform as well or in some cases better than fly ash from the same combustion process
- Coarse bottom ash can be separated by sieving; fine bottom ash cannot be separated from fly ash and will be a component of some harvested materials

Bottom Ash – Example Data

	Oxide Content (% wt.)					
	FA-A	GBA-A	FA-B	GBA-B		
SiO ₂	36.72	43.61	57.1	59.99		
Al_2O_3	18.2	16.12	20.83	18.43		
Fe ₂ O ₃	5.69	9.57	4.75	6.45		
SO₃	1.78	0.65	0.41	0.48		
CaO	25.64	20.42	10.3	9.44		
Na₂O	1.66	1.08	0.3	0.26		
MgO	5.82	4.96	2.46	2.15		
K₂O	0.43	0.39	1.03	0.91		

Michigan Technological University

Unpublished data: I. Diaz

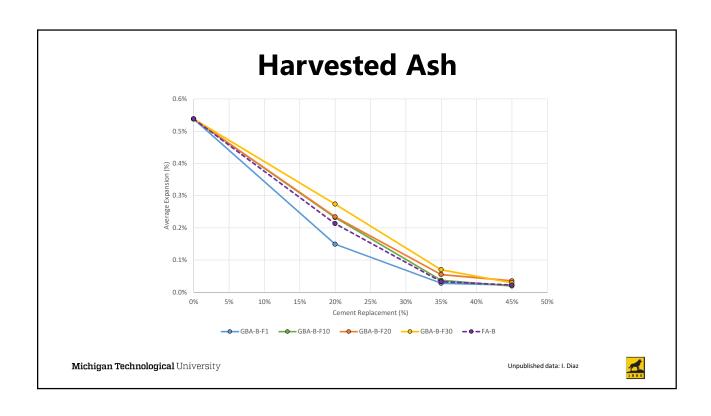
Bottom Ash – Example Data

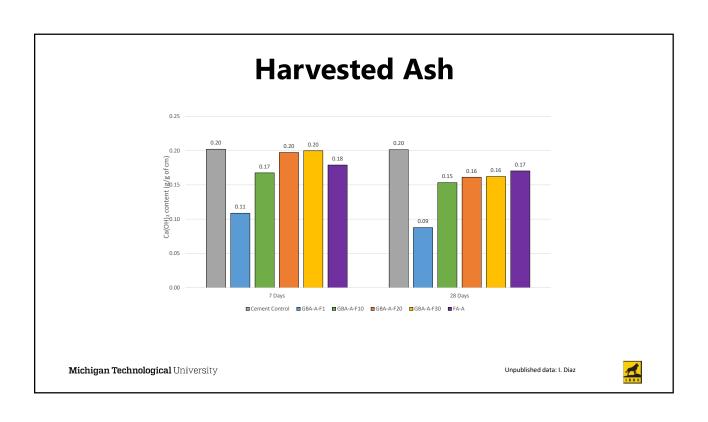
Phase (%)	FA-A	GBA-A	FA-B	GBA- B
Amorphous	83	53.9	72.7	64.0
Anorthite - (CaAl₂Si₂O ₈)	170	34.3	ā.	18.6
Quartz - (SiO₂)	4.1	2.9	13.9	13.7
Diopside - (CaMgSi₂O ₆)	9 <u>4</u> 9	8.1	u u	=
Hematite - (Fe₂O₃)	1.2	0.9	0.4	0.3
Merwinite - [Ca ₃ Mg(SiO ₄) ₂]	8.6	-	-	-
Lime - (CaO)	0.7	-	0.02	2
Periclase - (MgO)	2.4	-	0.03	0.2
Magnesite - (MgCO₃)	0.3	·•	-	-
Mullite - (Al ₆ Si ₂ O ₁₃)		:=:	11.4	2.0

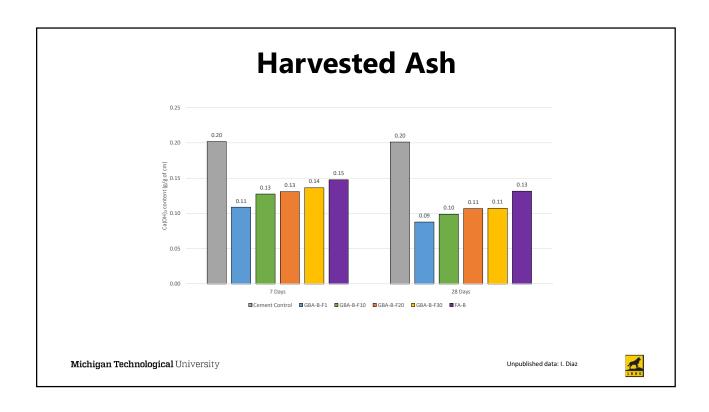
Michigan Technological University

Unpublished data: I. Diaz

Bottom Ash – Example Data


		Fly	Fly Ground Bottom Ash A Fly			Fly	ly Ground Bottom Ash B				
	C618 Limits		F1	F10	F20	F30	Ash B	F1	F10	F20	F30
Fineness	34 max	12.9	1.4	10.4	19.6	27.7	31.4	1.2	12.6	18.3	29.3
7-Day SAI, %	75 min	97	84	79	79	72	85	83	80	80	82
28-Day SAI, %	75 min	102	94	90	83	77	88	86	87	81	79
Water Req., %	105 max	94	97	97	97	100	100	102	100	100	100


Michigan Technological University


Unpublished data: I. Diaz

Harvested Ash – Testing

- Testing <u>for all coal combustion products</u> needs to be improved – harvested ash is only instigating the change
 - Reactivity
 - R3 test, modified SAI
 - Particle Size Distribution
 - Adsorption Properties
 - Foam Index, Iodine Number, SorbSensor™
 - Uniformity
 - NCHRP 10-104 addressing many of these issues

Harvested Ash

- Concerns
 - Current federal and state regulations require near-term closure of disposal ponds, <u>leaving insufficient time to recover and use all available ash</u>
 - Power producers have little to no incentive to use ash beneficially, closure (cap-in-place) is the lowest cost option.
- Benefits of landfilled ash
 - Well over a billion tons of ash in disposal
 - Proper processing <u>could</u> provide a more uniform product
 - Significant reserves could help limit cost increases although processing will add costs

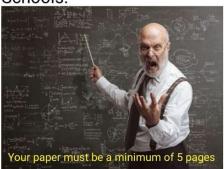
Michigan Technological University

A Word on "Off Spec" Ash

- So called "off-spec" ash is being considered for use
 - Note: Existing ash specifications do not address performance (i.e., meeting the specification does not guarantee performance)
- If performance of a material can be demonstrated use it
- Common off-spec issues
 - LOI
 - Fineness
- Materials that are not coal fly ash are not off-spec; they are simply not fly ash – but they may work
- Verify reserves Verify Uniformity

Summary

- Harvested ash is here to stay
- It will perform comparable to fly ash
- It will likely be more expensive due to processing costs
- It *could* be more uniform if processed properly
 - Specifications need to evolve to ensure this happens
- Bottom ash will be comingled with fly ash it cannot be avoided
- It is necessary to test and ensure performance
- With luck, we will have ample reserves for the future


Michigan Technological University

Questions?

llsutter@mtu.edu

Schools:

The Real World:

