Use of Red Pine for Stress-Laminated Glulam Bridges in Wisconsin

James P. Wacker

Forest Products Laboratory
U.S. Forest Service
Madison, Wisconsin

SmallWood 2010 Conference, Hot Springs, AR, April 20-22, 2010

National Wood In Transportation

- Established 1988 by Congress and administered by the U.S. Forest Service
- Program Components:
 - Demonstration Timber Bridges
 - Research
 - Technology Transfer & Information Management
 - Rural Revitalization
- Main Emphasis Areas
 - Underutilized, locally-available wood species
 - Innovative material and bridge designs

What is a Stress-Laminated Bridge?

- Slab-type bridge deck
- Sawn lumber, glulam, or structural composite lumber (SCL)
- No mechanical fasteners or glue between adjacent lams
- High-strength steel bars
- Butt joints permitted
- Improved wheel load distribution
- Innovative superstructure design

Wisconsin Lumber Species

- Pinus resinosa
- Strength properties
- CCC plantations
- Good treatability

Red Pine as a Bridge Material

- Technical Obstacles
 - Design values for WI red pine lumber
 - Lumber sizes limited availability
 - Not recognized by AITC for glulam manufacturing
 - Not recognized by AWPA for pressure-treatment

Development of glulam beam layups

Advantages of Glulam for Bridges

- Utilization of small-diameter materials
- Longer span capabilities
- Deeper member sections
- Low quality material in low stress zones
- Conserve high quality material
- Dry moisture content at installation

Teal River Bridge - Description

- Double-lane bridge
 - Simple span
 - 32.5 ft long
 - 24 ft wide
 - HS20 loading
 - Penta treatment
 - 1" dia. steel bars @ 44in.
 - No butt joints
 - Red Oak glulam at edge lams

Teal River Bridge - Beam Layup

Development of Red Pine Glulam

- E-rating of individual lams (by grade) at plant
 - dynaMOE and E-computer
- Stiffness testing of fabricated beams
 - dynaMOE and static beam deflection

Development of Red Pine Glulam

Verifying beam design at the Teal River site

Teal River Bridge - Construction

Teal River Bridge - Construction

Teal River Bridge - Field Monitoring

- 2-year period after construction
 - Moisture content
 - Stressing bar force
 - Static load testing
 - General condition

Teal River - Moisture Content Trend

Teal River - Bar Force Trend

Teal River - Current Condition

After 20 yrs of service

Pine River Bridge

- Double-lane bridge
 - 3-span continuous
 - 90 ft long
 - 38 ft wide
 - HS20 loading
 - Penta treatment
 - 1" dia. steel bars @ 40 in.
 - No butt joints
 - Red Oak glulam at edge lams

Pine River Bridge - Beam Layup

Lumber Stiffness – Flatwise Vibration

2 x 8 in. Nominal Red Pine					
		Modulus of Elasticity, MOE (x 10 ⁶ lb/in ²)			
Lamination Grade	No. Tested	Average	Coefficient of Variation		
1.8 MOE bottom	49	1.66	16.7%		
1.8 MOE top ^b	30	1.84	12.1%		
1.6 MOE	24	1.35	13.9%		
No. 2	7	1.10			

Beam Stiffness - Static Deflection

13-1/2 in. deep Glulam Beams					
7-1/4 in. wide		9-1/4 in. wide			
Beam No.	MOE (x10 ⁶ lb/in ²)	Beam No.	MOE (x10 ⁶ lb/in ²)		
13	1.35 1.43	7	1.10 1.15		
30	1.47	3	1.18		
23	1.49 1.51	9	1.21		
5	1.52	5	1.28		
7	1.53 1.54	4	1.31		
Average	1.48	Average	1.23		
C.O.V.	4.3%	C.O.V.	6.9%		

Pine River Bridge - Construction

Pine River Bridge – Construction

Pine River Bridge

- Field Monitoring Study
 - 5 year monitoring
 - Moisture content
 - Stressing bar force
 - Deck temperatures
 - Static load testing
 - Overall condition
 - Datalogger utilized

Pine River - Moisture Trend

Pine River - Bar Force Trend

Pine River – Static Load Test

Pine River - Current Condition

Red Pine Bridges (MI L.Peninsula)

Summary

- The former National Wood In Transportation Program facilitated the development of Red pine as a structural material.
- These two bridges were key in demonstrating the feasibility and potential for utilizing red pine for highway bridge applications.
- Additional glulam bridges have since utilized Red pine lumber and other small diameter species.
- Current condition of bridges is satisfactory after 20 years.

Acknowledgements

- Financial Support and Guidance
 - National Wood In Transportation Program
 - Federal Highway Administration
 - North Twenty RC&D
- Glulam Development → Russ Moody (FPL retired)
- Design Assistance → Westbrook Engineers, Chequamegon NF
- Field Data Acquisition → FPL Engineering Mechanics Laboratory
- Field Monitoring → Lola Hislop, Paula Hilbrich Lee, James Kainz
- Bridge Owners → Richland Center, Sawyer County
- Glulam Supplier → Sentinel Structures, Peshtigo, WI

Questions?

