

Portable Timber Bridge Systems for Temporary Stream Crossings

STEVE TAYLOR, MIKE RITTER, CHRISTIAN BRODBECK

STREAM CROSSING CHALLENGE

- Forest road stream crossings are focal points for introducing sediment into streams.
 - Construction, use, and removal activities can introduce significant sediment loads.
 - * Road approaches bring sediment to the stream.
 - * Low-impact and cost-effective stream crossing methods are needed.

* Temporary bridges are also needed by construction activities.

BIOSYSTEMS ENGINEERING

STREAM CROSSING WATER QUALITY IMPACTS

- Portable bridges can be installed and removed with negligible sediment loads to forest streams.
- Sediment introduction during use of portable bridges can be minimal – even during use of offhighway vehicle bridges by log skidders.
 - Majority of sediment introduced during storm events
 - * Majority of sediment is generated

BIOSYSTEMS ENGINEERING

Time Since Start of Sampling (hrs)

Sampler 1

PORTABLE BRIDGE DESIGN CONSIDERATIONS

- × Safety
 - * Structural adequacy / design vehi
 - Appropriate management of risks
- **×** Serviceability and Performance
 - **×** Deflection limitations
 - **×** Ease of installation
 - × Durability
- × Cost
 - × Initial
 - × Life-cycle

BRIDGE CLASS DESIGN CRITERIA

	Sub-Low Volume	Low Volume	High Volume	
Design Life	5 years 10 years		25 years	
Traffic Type	Off-highway vehicles Trucks		Trucks	
ADT	50	100	unlimited	
Design Speed	8 kph 8 kph 4		40 kph	
Load type	Off-highway vehicles	HS20 or greater	greater HS20 or greater	
Load application period	6 months	6 months 24 months 36 mo		
Deflection limit	none	none	AASHTO or reduced	

DESIGN LOADS

Standard AASHTO Equivalents of Forestry Vehicles by Span						
Vehicle	Wheeled Skidder					
Weight (lbs)	15000 - 20000	20000 - 25000	25000 - 30000	30000 - 35000	35000 - 40000	40000 - 45000
Bridge Span (ft)						
10	H 15-44	H 15-44	H 15-44	H 20-44	H 20-44	HS 25-44
12	H 15-44	H 15-44	H 15-44	H 20-44	H 20-44	HS 25-44
14	H 15-44	H 15-44	H 15-44	H 20-44	H 20-44	HS 25-44
16	H 15-44	H 15-44	H 15-44	H 20-44	H 20-44	HS 25-44
18	H 15-44	H 15-44	H 15-44	H 20-44	H 20-44	HS 25-44
20	H 15-44	H 15-44	H 15-44	H 20-44	H 20-44	HS 25-44
22	H 15-44	H 15-44	H 15-44	H 20-44	H 20-44	HS 25-44
24	H 15-44	H 15-44	HS 15-44	H 20-44	H 20-44	HS 25-44

DESIGN LOADS – DYNAMIC EFFECTS

	Dynamic Amplification Factor
Mean	1.17
90 th Percentile	1.50
95 th Percentile	1.64

PORTABLE BRIDGE EXAMPLES

Longitudinal deck superstructures

- Traditional glued-laminated timber deck
- Off-highway vehicle glued-laminated timber panels
- * T-section glued-laminated timber deck

TRADITIONAL GLULAM DECK

TRADITIONAL GLULAM DECK COST

- + initial bridge cost
- + installation cost per site = \$
- + total cost for 10 sites = \$25,500

+ average cost per site = \$ 2,550

GLULAM DECK FOR OFF-HIGHWAY VEHICLES

BIOSYSTEMS ENGINEERING

OFF-HIGHWAY VEHICLE BRIDGE COST

- + initial bridge cost
- + installation cost per site = \$
- + total cost for 50 sites = \$ 16,250
- + <u>average cost per site = \$ 325</u>

T-SECTION GLULAM DECK

T-SECTION BRIDGE COST

5

5

- + initial bridge cost 17,000
- + spread footer cost 600
- + installation and removal cost . \$
 1,000
- + Total Cost for 10 sites.....\$ 27,600 AUBURN UNIVERSITY BIOSYSTEMS ENGINE

DISCUSSION

* Bridges performed well overall.

- * Bridges successfully carried design loads and overloads.
- * Repeated installation/removal brings additional wear on components.
- * High initial cost limits acceptance for engineered bridges.
- Bolt-laminated and stresslaminated deck designs available.
 - * Repeated handling may be problematic for hardware.

SUMMARY

- Portable timber bridges are excellent options for temporary stream crossings.
 - Portable bridge systems can reduce water quality impacts at the road stream crossing.
 - * Longitudinal deck designs are most appropriate for portable applications.
 - Glulam decks have performed well in service. Repeated use results in considerable wear.
 - While glulam decks have high initial costs, the average cost per site is competitive with other stream crossing options.

