Bridge Monitoring – Security and Smart Bridges

Brent Phares and Terry Wipf

Iowa State University
National Center for Wood Transportation Structures
and
Bridge Engineering Center

Mike Ritter

USDA Forest Products Laboratory

Bridge Security

- Cooperative research project initiated by the USDA Forest Product Laboratory and Iowa State University.
- A critical need identified provide a level of protection to historic covered bridges.
 - Vandalism
 - Arson

The Need in Madison County, IA

III Initial Goals

- Develop & demonstrate a prototype remote security system
- Assist in the preservation of important timber bridges
- "Fill" a gap in the FHWA Covered
 Bridge Manual.
 Covered Bridge Manual

First Generation System Configuration

- Three types of sensing systems:
 - Infrared camera
 - Flame detector
 - Fiber optic temperature sensors
- Data collected and processed on-site.
- Alarms sent via text message and e-mail to ISU and emergency responders.

Infrared Camera

- Detects both people and fire
- Mounted on utility pole
- "Sees" IR spectrum rather than visible light

Flame Detector

- Detects presence of a flame using:
 - infrared
 - ultraviolet
 - visual technologies (flicker rate, etc.)
- Probability of false alarm is very small

Fiber Optics

- Measures temperature changes
- Length of sensor changes with temperature
- Installed in bridge behind trusses

On-site System

- Data transmitted from sensors using onsite wireless network
- Software processes data from all sensors
- Records data (including images) for use by law enforcement when alert issued

Notifications

>From popserve Fri Jun 16 04:10:33 2006 Date: Fri, 16 Jun 2006 04:10:34 -0500

From: bird@iastate.edu

Subject: Person Detected at Cedar Bridge

To: bird@iastate.edu, jmsmvs@iastate.edu, mlaviol@iastate.edu,

bphares@iastate.edu

System: FLIR A20M IR Camera Date/Time: 6/16/2006 4:10:32 AM

A PERSON has been detected at the Cedar Bridge.

>From popserve Tue Jun 20 16:02:16 2006 Date: Tue, 20 Jun 2006 16:02:07 -0500

From: bird@iastate.edu

Subject: Fire Detected at Cedar Bridge

To: bird@iastate.edu, jmsmvs@iastate.edu, mlaviol@iastate.edu,

bphares@iastate.edu

System: FLIR A20M IR Camera Date/Time: 6/20/2006 4:01:42 PM

A FIRE has been detected at the Cedar Bridge.

Current Activities

- Second generation system currently being deployed on an additional 5 bridges.
- A covered bridge security manual is currently being developed.

Development of a Smart Timber Bridge System

- Concept: A holistic approach to timber bridge management through the integration of sensors and on-board computing.
- Initially developed the scope of research needed for full development.
- Currently in the first phase of that work.

Current Objective and Scope

Objective

 Develop methods for embedding in and attaching sensors to wood members.

Scope

- Design two types of sensors packages:
 - » One for structural adhesion.
 - » One to isolate the sensor from structural response.
- Construction of small scale glulam specimens that are internally and externally instrumented.
- Laboratory testing of the specimens under different loading and temperature conditions.
- Selection of the best sensor packages.
- Construction of a full scale beam specimen using selected packages and test under laboratory conditions.

Small Scale Laboratory Testing

Nine specimens tested under:

- Bending
- Sustained loading
- Fast loading
- Pseudo cyclic loading
- Heat and sustained loading
- Cold and sustained loading

Structural Response Packages

External Packages:

C-FRP Loctite 426

IS-SS Loctite 4212

Internal Packages:

AM-SS Loctite 454

RS-SS Loctite 426

72H-SS Loctite 426

RS-SS Loctite 426

Small Scale Test Setup

Full Scale Beam

Full Scale Beam Testing

Typical Results

Typical Results

Questions?

Thank you!

www.woodcenter.org www.bec.iastate.edu

