Kiln Drying Basics for the Small Producer

Joe Denig
NC State University
Wood Products Extension
Raleigh, NC

Tel: 919-515-5582

E-mail: Joe_Denig@ncsu.edu

Downloadable References

Go to www.fpl.fs.fed.us

Look under publications

- Drying hardwood lumber
- Dry Kiln operator's manual
- Dry kiln schedules for commercial woods

Hard References

- Go to www.forestprod.org
- Look under publications

- Drying hardwood lumber
- Dry Kiln operator's manual
- Dry kiln schedules for commercial woods

2010 Dry Kiln Operators' Courses

- Haywood Community College
 - Clyde (Near Asheville NC)
 - July 27-30, 2010
 - Whit Whitmire
 - Phone: 828-565-4246
 - E-mail: mwhitmire@haywood.edu
- University of Minnesota
 - August 16-19, 2010
 - Harlan D. Petersen P
 - Phone: 612-624-3407
 - E-mail: harlan@umn.edu

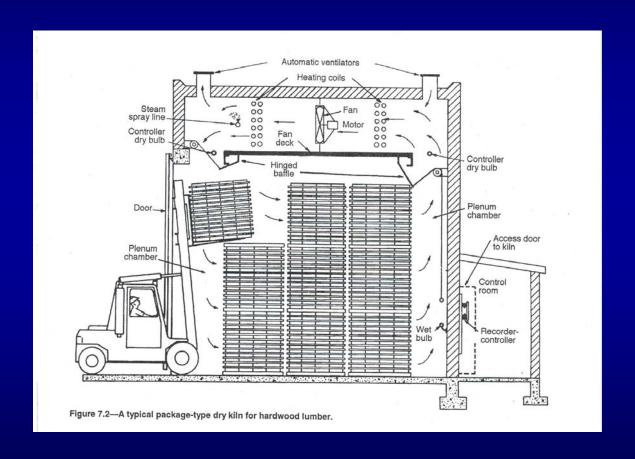
Warning: Decide if it is a hobby or a business?

- Don't be cheap
- Do things right
- Go to a kiln operator's short course

Log Protection

- Log protection is critical to avoid stain and splits
- Rapid log turnover is one of the most cost effective ways to avoid problems
- End coating logs with wax or anti stain chemical will help if longer storage is used

Quality Stacking


- Uniform sized lumber
- Uniform sized, dry sticks
- Cross outs and sticks should be in vertical alignment
- Protect the ends

Principles Of Drying

- Heat
- Humidity
- EMC
- Airflow

Heat

- Evaporate water
- Move water molecules from center of the lumber to the outside
- Wood is weaker at higher temperatures
- Use only enough heat to get the job done
- Dry bulb temperature

Humidity

- Relative Humidity
- Allows water to evaporate from the lumber surface
- Controls the drying rate at the beginning of drying
- More humid on the exiting air side of a load
- We use a wet bulb or Equilibrium Moisture Content (EMC) wafer to measure humidity in a kiln
- Need airflow past wet bulb to get an accurate reading

Airflow

- Used to bring energy to the wood, and take away moisture
- Too little airflow can lead to slow drying, variable drying and staining
- Too much airflow can lead to checking

Airflow

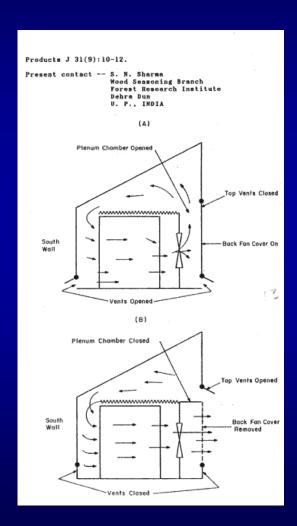
- Oak 300-350 FPM (1.5-1.8m/sec.)
- Poplar 600-700 FPM (3.1-3.6m/sec.)
- Hard Maple 350-450 FPM (1.8 -2.3m/sec.)
- White Pine 600-700 FPM (3.0 -3.6m/sec.)
- Southern Pine (low temp) 650-750 FPM (3.3-3.8m/sec.)
- Southern Pine (high temp) 1200-1600
 FPM (6.0-8.1m/sec.)

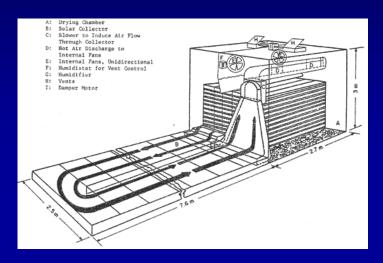
Hot Room Drying

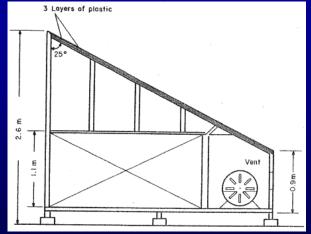
Air dry or shed dry first

Move lumber to progressively warmer and dryer environment

 End up in a heated part of your house for at least one heating season for 4/4 lumber

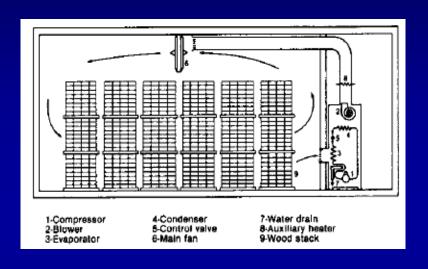

- Sounds like a good idea (using the sun, etc)
- Need production all of the time
- Can get expensive with all the bells and whistles
- Need to be selective on what you dry (stain & checking)

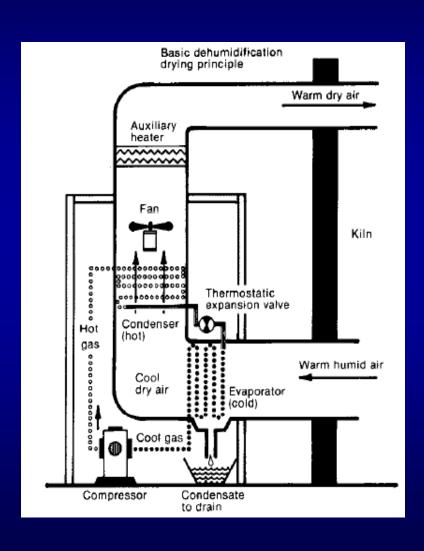

- Solar collectors gather approximately 1000 to 1200 BTUs per square foot
- As a general rule have the solar collector at an angle from horizontal as the collector is located north or south of the equator
- In this hemisphere face it south
- It takes approximately 1000 BTUs to evaporate one pound of water


Species	Daily MC% Loss Target	Weight Per 1 MBF Dry	Weight Of Moisture Loss	MBTUs/MBF/Day or area in square feet of solar collector
SYP	30.0%	2710 lbs.	813	813
Poplar	30.0%	2315lbs.	695	695
H. Maple	5.0%	3045lbs.	152	152
Cherry	4.5%	2692lbs.	121	121
Red Oak	2.75%	3270lbs.	90	90

 For slow drying species the solar collector ratio of 100 ft² per MBF can be used

 For moderately drying species the solar collector ratio of 200 ft² per MBF should be used


Solar Drying - Poplar to Oak


Suggestions

- Start with an easy to dry wood and learn your kiln
- Top vent is for overheat (can get up to 140°F)
- Bottom vents are to allow moist air to escape and bring in fresh air
- Baffle well
- Can add small dehumidifier and or heater

- No boiler needed
- No vents, closed loop system
- Energy efficient but you are using electricity
- No heat up system or humidifying system

- Compressing gas heats the gas up, which in turn can heat the air
- Expanding gas cools the gas down, which is used to lower the air temperature or condense water out of the air stream

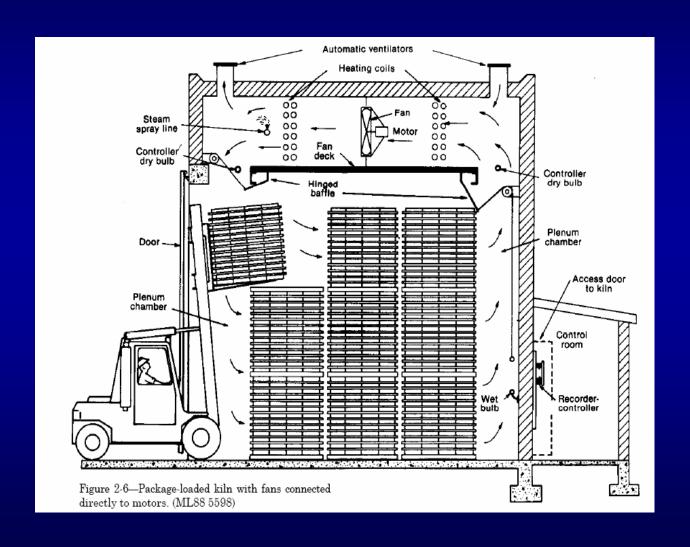
- Slow drying species, oak 0.50 to 0.75 hp/mbf
- Moderate, ash 1.00 hp/mbf
- Fast drying, pine 1.50 to 2.00 hp/mbf
- Better to slightly undersize than oversize

- Compressor and electrical outside the kiln
- Stainless steel coils
- Ability to reach higher temperatures (160°F)
- Enough airflow
- Well insulated
- Auxiliary heat and humidification system

Cost

- Energy Cost reported to be between \$50 to \$80 per MBF
- Need a well insulated building!!!!

Using a reefer

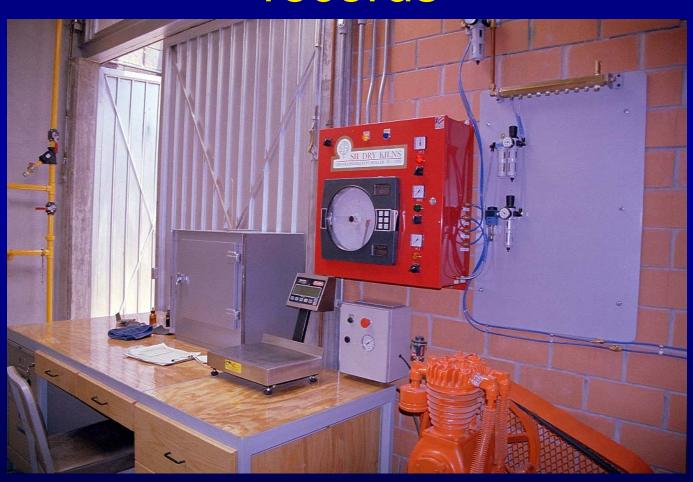


Conventional Steam Kiln

Conventional Steam Kiln

- My former student, Miguel Angel Camara Rubio, as part of his Master's project built a kiln at his family business in Mexico City.
- He wanted a kiln that was highly flexible in terms of ability to dry different species and thicknesses

Pine lumber – notice the quality of stacking


Hardwoods

Variable speed fan control gives a lot of flexibility

Notice what gives him good resultsgood sample techniques and records

Small kilns can also be used to heat treat pallet material as well as dry lumber.

Other Alternatives

Other Alternatives (Small)

- 7,000 BF capacity
- Direct fired
- Computer controlled
- Optional 6 MC% resistance sensors
- Five 20" fans, 2HP
- Bi-fold doors

Good luck!

