Minnesota Timber Bridge Maintenance and Construction – A County Perspective

Brian Brashaw

University of Minnesota Duluth

Matthew Hemmila

St. Louis County, Minnesota

SmallWood 2010

April 21, 2010

UMD/St. Louis County, Minnesota Cooperation

- Training
- Inspections
 - Advanced inspection equipment
 - Hands-on and cooperative
- Research
 - Vibration monitoring approach
 - Load testing

USDA Forest Products Laboratory and University of Minnesota Duluth **Publications**

Forest

2. Evaluation of Several Stress-Wave Tools

Brian K. Brashaw

Condition Assessment of Timber Bridges 1. Evaluation of a Micro-Drilling

Resistance Tool

St. Louis County Background

- Total Size
 6,860 miles² (17,767 km²)
- Land
 6,225 miles² (16,123 km²)
- Water
 635 miles² (1,644 km²) 9.25%

Bridge Inventory

- 568 Bridges
- ~100 Timber Bridges
 - □ Timber girders or stringer
 - Panelized dowel laminated
 - Wheeler Consolidated bridges
 - □ Timber deck with steel girders

SLC BridgeMap 2004

Public Works Structure

Engineering

- Bridge Engineer
- 5 technicians
 - Inspections
 - Design for contractors& maintenance
 - □ Survey/topos

Maintenance

- Superintendent
- 2 four-man crews
 - Routine maintenance
 - Significant repairs
 - New construction

Bridge Program – Inspections

- Lots to do, not enough time
 - □ 170 every 12 months
 - □ Remainder on 24 month schedule
- Recent purchase and use of
 - ☐ Stress wave timers
 - □ Resistance microdrills

Bridge Program Replacement

- Decision factors
 - Cost, site, spanlength, staffing
- Designs
 - Dowel laminated slab span
 - Panel-Lam from Wheeler
 - Copper naphthenate
 - Steel pilings

Recent Activity

2010 Superstructure replacement
 Bridge 184

2009 Replacement Bridge 85.

2008 Superstructure replacement
 Bridge 53; Nichols Lake

Repairs to two bridges to replace pile caps and partial repairs to pilings

Bridge 53

- Steel
 girders with
 timber deck,
 timber pile
 caps and
 pilings
- **1964**
- 22 ft span
- Restricted load ratings

Bridge 85

- **1946**
- DF girders
- SYP pilings
- Timber deck
- Creosote
- 40 ft
- 2 spans
- 2 lanes

Summary

- Timber will continue to be used on shorter spans
- Currently using Wheeler Panel-Lam systems installed by their own crews
- Steel pilings will be used for all replacements
- Ongoing emphasis on maintenance/repair
- Strategic research partnership with UMD is a priority

Acknowledgments

