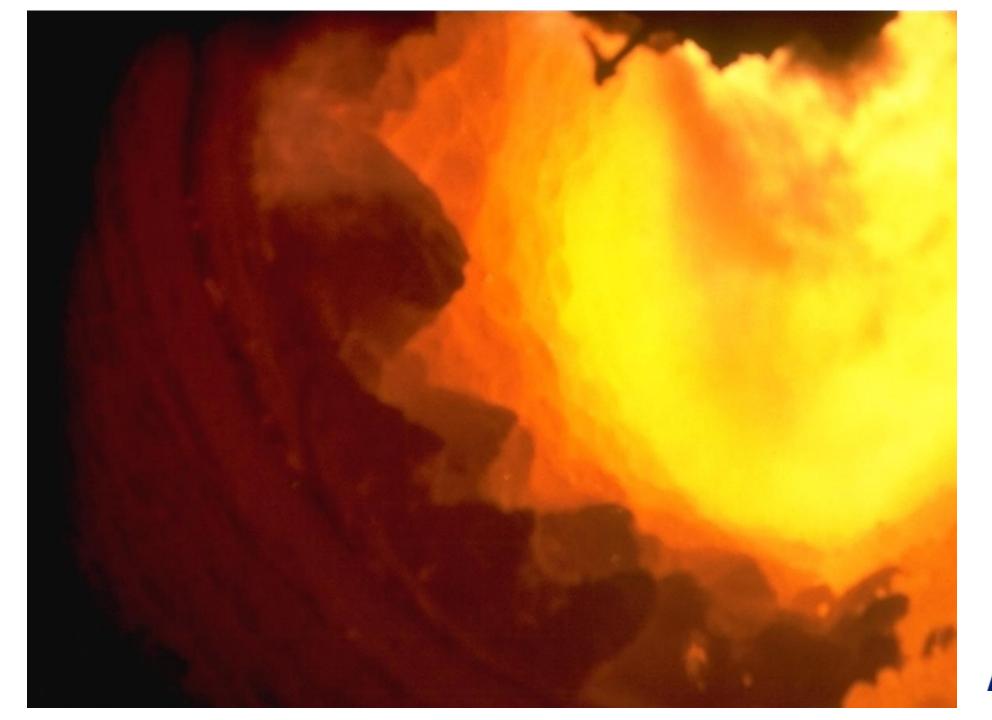


Agenda


- Cement Manufacturing 101 Review
- History of Portland Limestone Cement Usage in North America
- How do we determine the amount limestone to be used
- What levers do we have to improve strength performance
- What do we do if we are not hitting our quality targets
- How do we monitor our quality
- Grinding Aids

Cement 101

Portland Cement Clinker – Bogue Compounds

- C₃S 3CaO·SiO₂ (Alite) Tricalcium silicate

 The major contributor to strength at all ages. Hydrates and hardens rapidly. Largely responsible for early strength and generates a modest amount of heat.
- C₂S 2CaO·SiO₂ (Belite) Dicalcium silicate

 Hydrates and hardens slowly and contributes largely to strength at ages beyond one week.
- C₃A 3CaO·Al₂O₃ Tricalcium aluminate
 Liberates a large amount of heat. Contributes to early strengths. Low C3A cements are sulfate resistant.
- **C₄AF4CaO·Al₂O₃·Fe₂O₃ Tetracalcium aluminoferrite**Hydrates rapidly but contributes very little to strength. High C4AF cements are darker in color. C3A + C4AF are fluxes and govern the clinkering temperature.

History of Use of Limestone in Cements

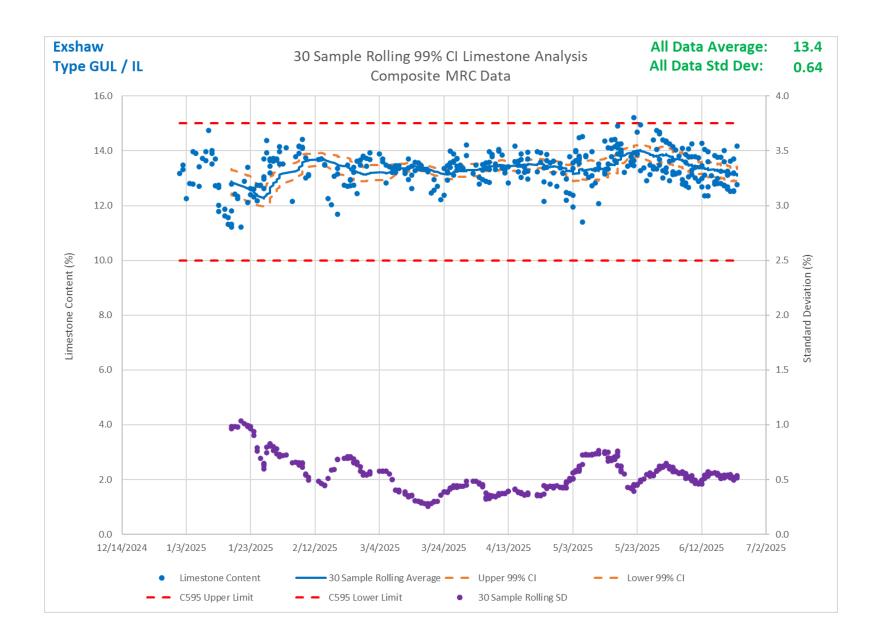
- 1965 Cement with 20% limestone cement in Germany for specialty applications
- 1979 French cement standards allows limestone additions.
- 1983 CSA A5 allows up to 5% in portland cement
- 1990 15±5% limestone blended cements routinely used in Germany
- 1992 UK specs allows up to 20% in limestone cement
- 2000 EN 197-1 allows 5% MAC (typ. limestone) in all 27 common cements, as was commonly practiced in various European cement standards prior to that.
- 2000 EN 197-1 creates CEM II/A-L (6-20%) and CEM II/B-L (21-35%)
- 2004 ASTM C 150 allows 5% in Types I-V
- 2006 CSA A3001 allows 5% in other Types than GU
- 2007 AASHTO M85 allows 5% in Types I-V
- 2008 CSA A3001 includes PLC containing 5%-15% limestone
- 2012 ASTM C595 Includes PLC Containing 5%-15%
- Lafarge PNW 100% Transition in 2017 sulfate

WHY IL

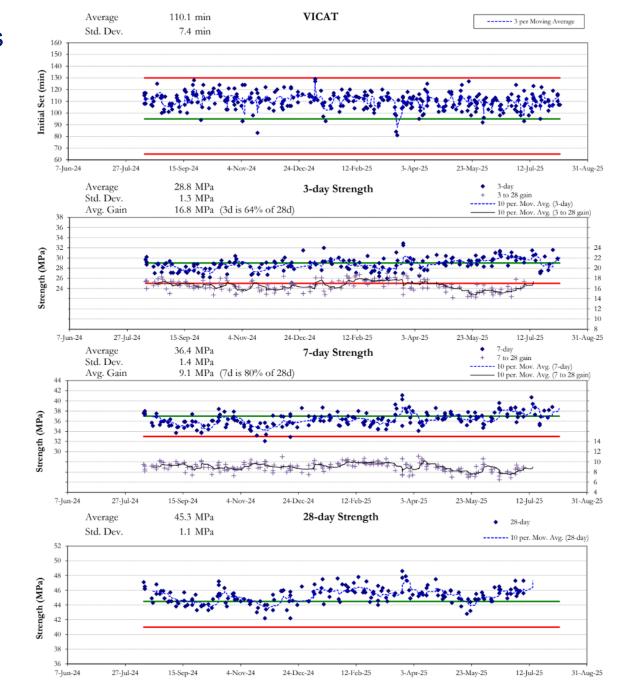
- Save the World?
- Increased Domestic Output
- North American Job Security
- Make Money

Old Montra – Equal Performance and Green for Free

- Is this true?
- No Not all the time
- What have we learned and what are we doing to improve things


Why Don't All ILs have the same limestone??

- Not all Clinkers have the same reactivity
- Can not compare IL in the PNW or NE US
- Not all combinations give the other desired properties customers require
 - 1) Bleed
 - 2) Set
 - 3) SCMs
 - 4) Admixtures
 - 5) Cost!
 - 6) Other



Cement Production – An Industrial Process that requires adjustments and QC

Quality Monitoring – Control Charts

Limestone Calcs

CO2 Measurements

By Split Loss

LOI 950°C Minus LOI 550°C

Advantage: All plants are used to it

Disadvantage: Repeatability / accuracy?

Calculation A

Measure CO2 of limestone.

Measure CO2 of cement

Advantage: Simplest, aligns C150, easiest

for auditing by 3rd party

Disadvantage: Overestimates limestone, as it assumes that all CO2 comes from limestone when in reality there can also be CO2 in clinker and gypsum and CKD and other processing addition, if any

%Lst = CO2_{cmt} / CO2_{lst}

By Leco

Induction furnace w/ Infrared Absorption CO2 Detector

Advantage: Accuracy vs split loss

Disadvantage: Special eqpt

Calculation B

Measure CO2 of limestone

Measure CO2 of gypsum

Measure CO2 of clinker, CKD, etc.

Measure CO2 of cement

Advantage: Avoid overestimation

Disadvantage: Relies on WF

accuracy for composition

%Lst = (CO2_{cmt} - CO2_{clk}x %Clk -

CO2_{gyp}x %Gyp) / CO2_{lst}

Finish Mill Process

Two types of Finish Mill Systems - Ball Mills and Vertical Roller Mills

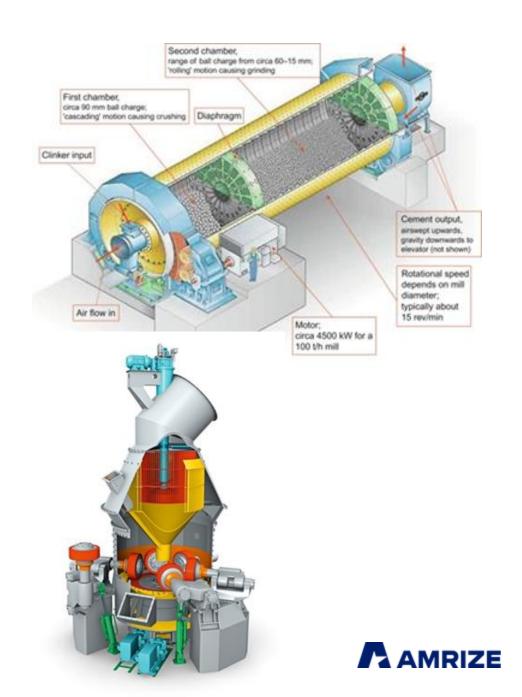
Cement is produced by combining **clinker**, **gypsum and limestone** together, and grinding this combination into a **fine powder**. A **grinding additive** is used to improve process efficiency and cement performance.

Testing is completed **every 3 hours** during production (Production Quality Control)

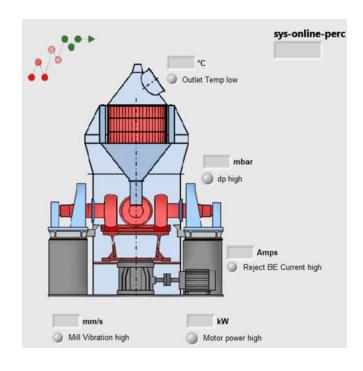
- Fineness
- Chemical Composition

Testing is also completed on composite samples (Production Quality Assurance)

- Mortar Strength
- Setting Time
- Flow/Workability


Ball Mill Advantages:

Higher Strength Faster Set??


VRM Advantages:

Uniformity

Up to 40% more efficient

Process Control

Two Modes of Control

High Level Control - Automated Process Control (Preferred)

- Testing Results and Process Data are fed into software
- Software analyzes results and makes changes to process parameters
- Allows for fine optimization and minimizes human error

Manual Control - Manual Adjustments to Process

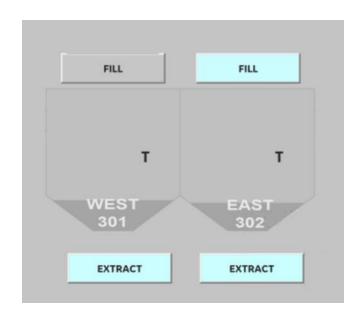
- Required for certain non-steady-state situations E.G. Mill Start-Up
- All adjustments are made one at a time directly to the process controllers

What happens if something is off in QC???-

- Fringe Bins
- Blending
- Use in other products 1157, CTB ect

Fringe System - Mill Instability

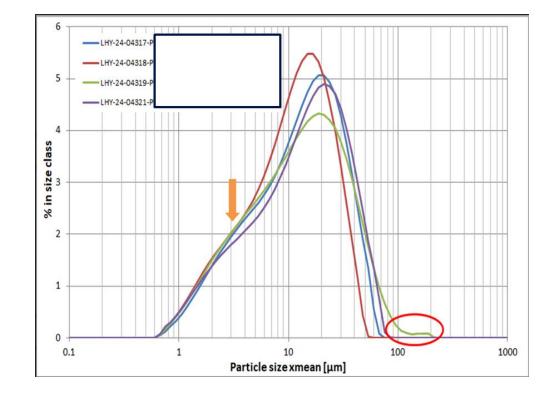
Transient Conditions

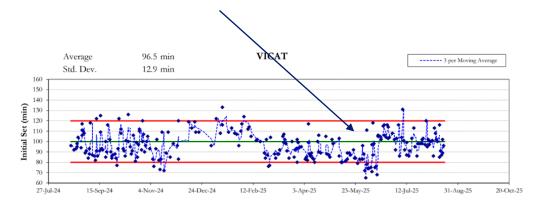

- Mill Start-Up
- Mill Shut-Down
- Product Type Changes

During **periods of instability**, before steady state operations are achieved, cement produced can be of lower quality.

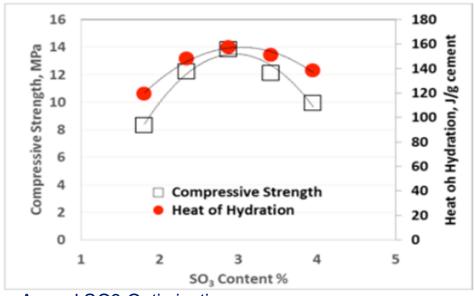
This cement typically **meets ASTM/CSA** requirements, but not necessarily **AMRIZE** standards.

This cement is **segregated** from production silos, into dedicated fringe cement silos


The material is **reintroduced** into the mill systems to be re-milled into cement that meets all **AMRIZE** standards

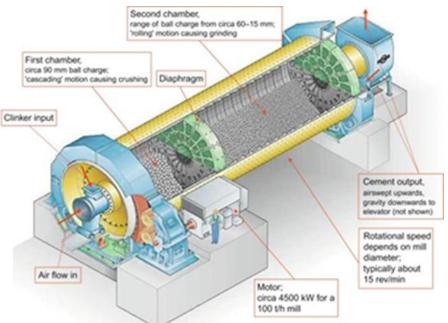

Processes or Steps we can take to improve Quality

- -Blaine/PSD
- Finer limestone than clinker?


C3A Example

Processes or Steps we can take to improve Quality

SO3 - Gypsum



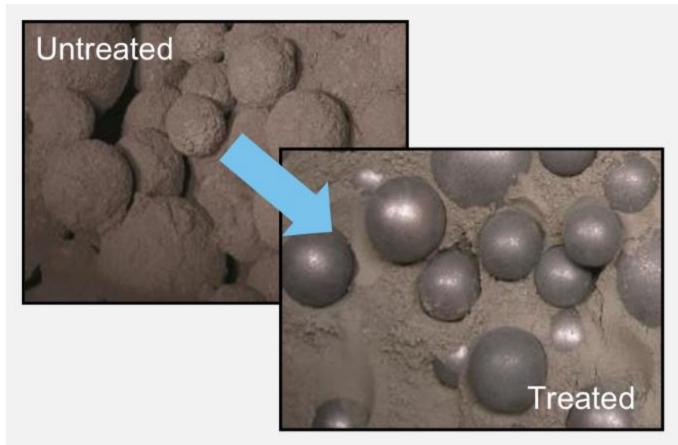
Annual SO3 Optimization

Limestone Percentage

- Small Changes to increase strength
- May require a nomenclature change ie: IL(10) to IL(7)

Mill Temperature

Grinding Aid - Cement Quality Enhancement


Historically used to improve efficiency and productivity only – Pack Set

Grinding Aids can contain other additives, which can be used to improve cement quality in addition to process efficiency

- Strength
- Setting Time
- Flow/workablity

How often do we change?

- Average Once Every 10 years
 - Cost
 - Cement Chemistry/mineralogy
 - Complaints
 - Performance (flow ect)

Grinding Aid - Cement Quality Enhancement

DEG (Di-ethaline glycol) & TIPA (Tri-isopropanol amine) – First used in the 1930s

- Increase Limestone Content in 2016 from 9.5% to 14%
- Maintain Mortar Strengths and Setting Time

Benefits of Grinding Aid

Increased efficiency: Lower energy consumption during cement production. Improved product quality: Finer cement particle size and enhanced mechanical properties.

Economic savings: Reduced production costs and better performance lead to long-term economic benefits.

Sustainability: Contributes to more efficient and sustainable modern construction practices.

Mapei Grinding Aid Trial Summary				
	Clinker Type	Limestone Content	28 Day Mortar Strength	Setting Time
		%	Мра	min
Standard Grinding Aid	Type 10	9.5	43.5	110
Mapei MCH 280	Type 10	14.0	43.5	110

- Specialty Grinding Aids

