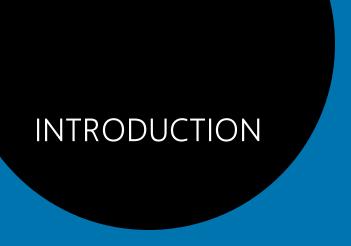
NEBRASKA

Good Life. Great Journey.

DEPARTMENT OF TRANSPORTATION


Research

September 10, 2025

By

Wally Heyen – NDOT PCC Engineer Lieska Halsey – NDOT Research Engineer

Colloidal Silica: Cement Enhancing Admixture Product Evaluation

Application of Internal Curing to Improve Concrete Bridge Deck

For Today's Presentation

Good Life. Great Journey.

DEPARTMENT OF TRANSPORTATION

Colloidal Silica: Cement Enhancing Admixture Product Evaluation

Preliminary Lab work

Motivation to Research

Colloidal Silica presented by Intelligent Concrete, Inc. at NCPA Conference in 2019

Product name: Nouryon's colloidal silica

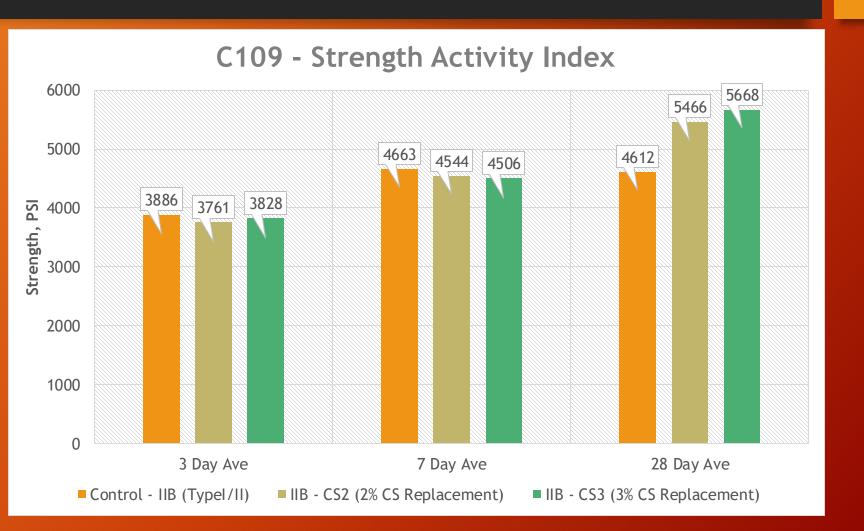
- Solution to the Increase Shortage of Class F Fly Ash
 - Environmental Regulations
- ASR Mitigation Capabilities
 - CS w/F-ash Performs better than F-ash alone
- Other Benefits
 - Higher Strengths
 - Lower Permeability
 - Lower HRWR use

Purpose of the Investigation

Develop cost effective patching materials that provide sufficient early strength (a minimum 3,000 psi compressive strength in 4-8 hours) for proper traffic opening.

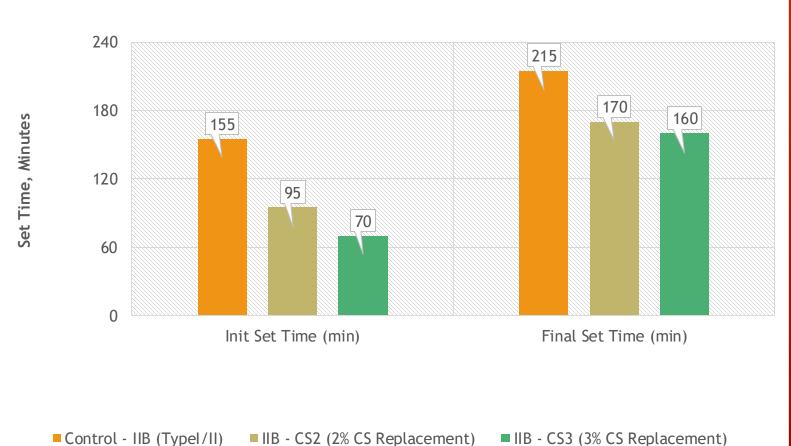
Determine if CS can enhance high, early strength for use in patching and repairs.

Determine if CS can maintain or improve ASR mitigation as F-ash content is decreased.


Colloidal Silica Testing Admixture (Addition) vs. SCM (Replacement)

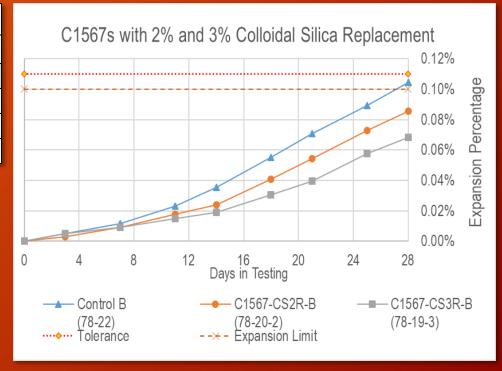
Summary Table: CS Addition vs. Replacement

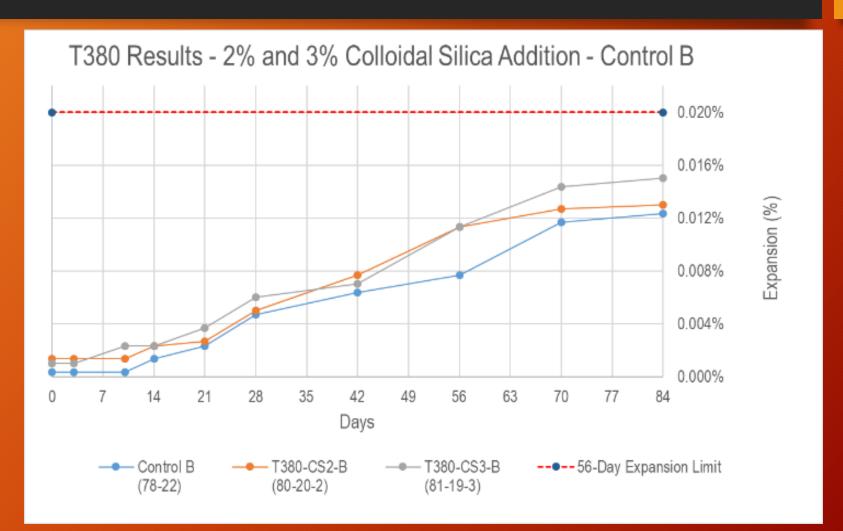
Key Differences at a Glance


Feature	Admixture (Addition)	SCM (Replacement)
CS Role	Added on top	Replaces cementitious
Total Mass	Increases	Remains constant
Cement/F-Ash Ratio	Unchanged	May change
Implementation Complexity	Low	High

Strength Activity Index: Type II CS Replacement

Set Time Testing: Type II Cement CS Admixture Replacement


C191 CS Replacement - Set Time


Matrix 3 - CS Replacements (SCM) for C1567s

Matrix 3				
C1567 Replacement	C1567 Perleasment Percentage %			CaO/SiO ₂ Ratio
O 1307 Nepiacement	// I	F-ash	CS	
Control B	78	22	0	1.81
C1567-CS2R-B	78	20	2	1.83
C1567-CS3R-B	78	19	3	1.85

- All Samples pass C1567
- CS at 3% replacement expanded the least, 0.07%

AASHTO T380 (Miniature Concrete Prism Test, MCPT)

Final Thoughts

- Colloidal silica (CS) is effective in mitigating Alkali-Silica Reaction (ASR) when replacing Class F fly ash at 2-3% levels.
- CS-treated cements achieved comparable or superior strength and set time performance, particularly with Type I/II cement (up to 1000 PSI strength gain at 28 days and 45-55 min faster set time).
- Material cost is a significant barrier: 3% CS increases concrete cost by approx. 66% not recommended for PR patches.

Recommendations:

- Use CS selectively in applications where:
 - ASR mitigation is critical and fly ash supply is limited.
 - Early strength gain or faster set time is needed (e.g., fast-track projects).
- CS may be cost-effective as a remedial option for:
 - Ready-mix suppliers with non-compliant IP cement.
 - Avoiding removal from NDOT's Approved Products List due to ASR issues.
- Further cost-benefit analysis and field trials are recommended before large-scale implementation.

Internal Cured (IC) Concrete with E5 IC Admixtures

Research Main Objective

The main objective is <u>to improve concrete durability</u> by minimizing the shrinkage cracks. Shrinkage cracking in concrete is a key limiting factor in achieving acceptable long-term performance in concrete bridges, rails and repairs.

NDOT Through Research Targeted

Improving Mix Design

 Develop concrete mixtures with reduced-cementitious materials content (RCMC) for bridge decks and rails to minimize early-age shrinkage cracks.

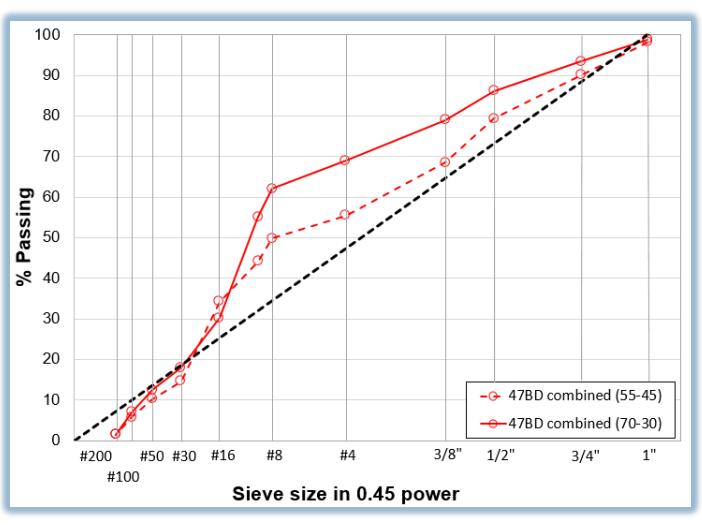
Improve Curing Method

 The goal will be to cut back on the number of days of wet curing and improving current curing practices

Mix Design for Conventional Bridge Deck Applications

		Total	Total Ag	gregates
Class of Concrete (1)	Base Cement Type	Cementitious Materials Min. lb./cy	Min. lb./cy	Max lb./cy
47B**		564	2850	3150
47B***		564	2850	3150
47BD	IP/IT/IS*	658	2500	3000
47B-HE		752	2500	3000
BX(4)		564	2850	3150
47B-OL****		564	2850	3200
PR1	I/II/IL	752	2500	2950
PR3	III	799	2500	2950
SF ₍₅₎	I/II/IL	589	2850	3200

Table 1002.02 (Continued)

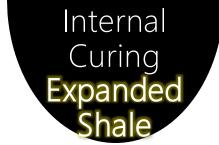

Table 1002:02 (Continued)					
Class of Concrete (1)	Air Content % Min-Max (2)	Ledge Rock (%)	Water/Cement Ratio Max (3)	Required Strength Min. psi	
47B**	6.5-9.0	-	0.45	3500	
47B***	6.0-8.5	-	0.45	3500	
47BD	6.0-8.5	30 <u>+</u> 3	0.42	4000	
47B-HE	6.0-8.5	30 <u>+</u> 3	0.40	3500	
BX(4)	6.0-8.5	-	0.45	3500	
47B-OL****	5.0-7.0	30 <u>+</u> 3	0.36	4000	
PR1	6.0-8.5	30 <u>+</u> 3	0.36	3500	
PR3	6.0-8.5	30 <u>+</u> 3	0.45	3500	

Research - Mix Design Proposed for Bridge Deck Applications

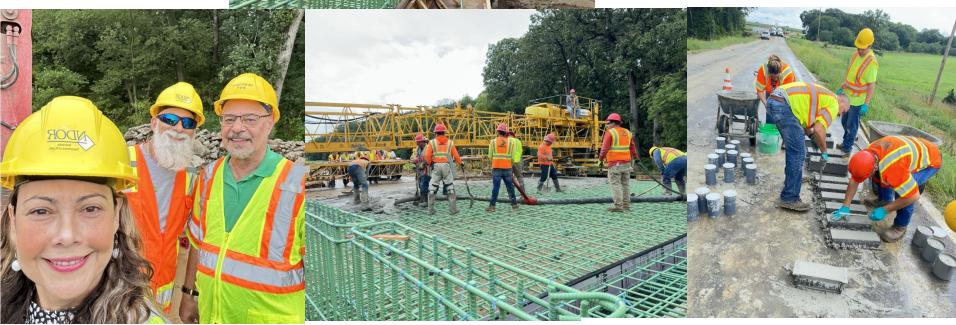
NDOT Research on Internal Curing Materials

Lightweight fine aggregate (expanded clay and <u>expanded shale</u>)

Admixtures



Nanosilica or silica dust, is a material that, like Silica Fume, is characterized by its high SiO2 percentage, over 99%.


Jeal Creative ©

NDOT Research Follow up Implementation Completed 2023

Project: STP-50-1 (117)
Pawnee City-Southeast Bridges
ICC Test Pour

NDOT Field Implementation

All the mechanical and permeability properties were tested by Materials and Research PCC Laboratory.

Enhancing Performance with Internally Cured Concrete EDC-7

Research Follow up Implementation

Project: STP-50-1 (117)
Pawnee City-Southeast Bridges
ICC Test Pour

Field Implementation – Mechanical and Permeability Properties

Mix Design

Mix ID	Mix Agg. Proportions	Cement (pcy)	W/SCM Ratio at placement	Measured Air Content ASTM C231	Measured Unit Weight ASTM C138 Cu.yd
47BD -Control	30%CA/70%FA	658	0.40	6.4%	140.4
47B-IC20	32% CA/52%FA/*16%EP	658	0.41	8.5%	131.2

^{*}Lightweight Fine Aggregate (Expanded Shale)

Mechanical Properties Test Results

(Type of Mix)	Compressive Strength (Cylinders) ASTM C39 Plastic Concrete 3 Cylinders Average (Psi)				Flexure Strength ASTM C78 6 Specimen Average (Psi)
Age (Days)	7	14	21	28	
47BD	4510	4510 5570 6110 6580			
47BD-IC	3820	4870	5440	5550	740

Research Follow up Implementation

Project: STP-50-1 (117)
Pawnee City-Southeast Bridges
ICC Test Pour

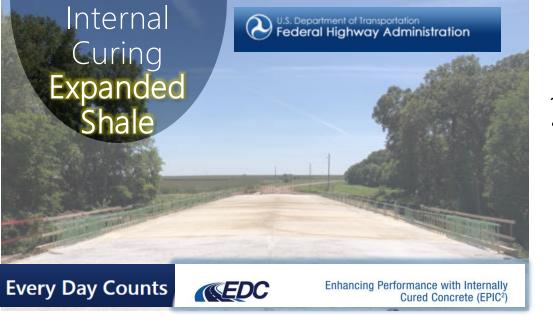
Field Implementation – Mechanical and Permeability Properties

Mix Design

Mix ID	Mix Agg. Proportions	Cement (pcy)	W/SCM Ratio at placement	Measured Air Content ASTM C231	Measured Unit Weight ASTM C138 Cu.yd
47BD -Control	30%CA/70%FA	658	0.40	6.4%	140.4
47B-IC20	32% CA/52%FA/*16%EP	658	0.41	8.5%	131.2

^{*}Lightweight Fine Aggregate (Expanded Shale)

Permeability & Durability Properties Test Results –


(Type of Mix)	Shrinkage ASTM C 157 (at 64 of 64 weeks) (Percent length change) Air Test Environment	Shrinkage ASTM C 157 (at 64 of 64 weeks) (Percent length change) Wet Test Environment	Freeze and Thaw ASTM C666 Durability Factor after 300 cycles*	Rapid Chloride Ion Permeability AASHTO T277 (Coulomb Passed) 4x8 Cylinder Kohm-cm	NDOT Wet & Dry Test
47BD	-0.07% @64 weeks	-0.01% 64 weeks	70% @ 300 cycles	45.73 Very Low	Passed
47BD-IC	-0.05% @64 weeks	-0.01% 64 weeks	80% @ 300 cycles	40.205 Very Low	Passed

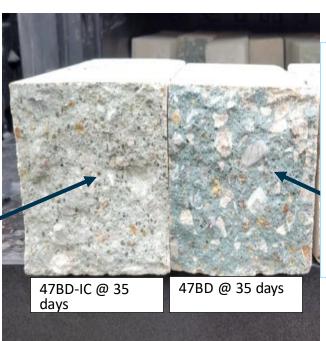
Note*NDOT: Durability factor > 70% and mass loss < 5% ASTM C 666: Durability Factor > 70 %

The NDOT Wet & Dry test evaluates the behavior of the mix under heating and cooling environment for 18 months.

Wet & Dry Test Chamber

Research Follow up Implementation

Project: STP-50-1 (117) Pawnee City-Southeast Bridges ICC Test Pour


Year Performance

NDOT monitored the bridged before overlay

Visual Observations

- 47B Control
- 2. 47BD-IC

This specimen shows the internal curing "supplying water into the fresh concrete place" even when using concrete containing slag as a supplemental cementitious material

This greenish hue is a normal appearance on concrete containing slag as a cementitious material. This will disappear with time, generally within a one-year period. Concrete containing slag cement does, however, have a generally lighter color.

Internal Cure

Benefits

Nanosilica or silica dust, is a material that, like Silica Fume, is characterized by its high SiO2 percentage, over 99%.

Placement

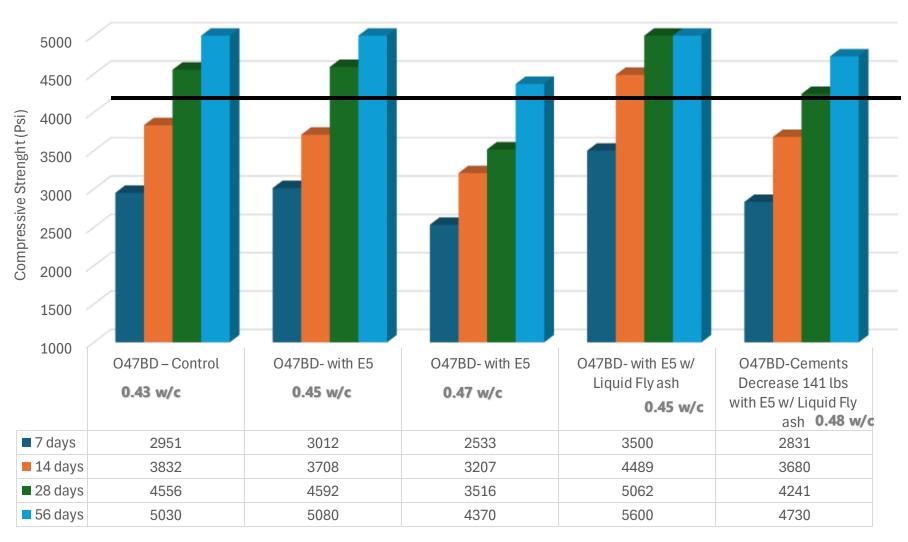
- Improved workability
- No water applied on the surface
- Longer window for finishing
- Minimal bleed rate
- Eliminate evaporative retardants (90% water)
- Consistent air entrainment
- Lower pump pressure
- Reduction in wet curing

Hardened concrete

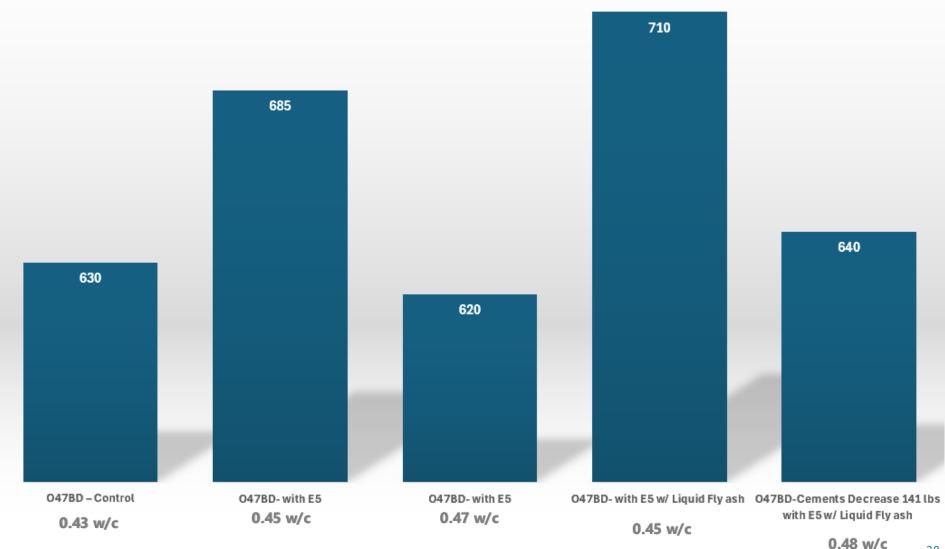
- Cement/paste reduction
- Improved strength
- Minimal to zero cracking
- Reduced permeability

NEW Mix Designs Tested

Mix ID Cements Decrease 94 lbs	Mix Agg. Proportions	Type IS Cement (pcy)	W/SC M Ratio	Measured Air Content ASTM C 231	Measured Unit Weight ASTM C138 Cu.yd	Water Reducer (floz/cwt)
O47BD – Control			0.43	8.5	Not measure	3.01
O47BD- with E5			0.45	6.3	141.4	1.60
O47BD- with E5		564	0.47	7.6	138.6	1.60
O47BD- with E5 w/ Liquid Fly ash	45%CA/55%FA		0.45	6.3	141.4	3.01
O47BD-Cements Decrease 141 lbs with E5 w/ Liquid Fly ash	45%	517	0.48	7.1	139.0	2.90


Note: E5 Admixture requires additional water due to the Nano Silica

Test


Mechanical Durability Properties

Compressive Strength ASTM C 39 Results Average 3 Cylinders

Flexure Strength ASTM C 78 @ Psi 28 days **Results Average 6 Beams**

Permeability Properties Test Results

Mix ID Cements Decrease 94 Ibs	Rapid Chloride Ion Permeability AASHTO T277 (Coulomb Passed)** 4x8 Cylinder Kohm-cm 28 Days	Rapid Chloride Ion Permeability AASHTO T277 (Coulomb Passed)** 4x8 Cylinder Kohm-cm 56 Days	NDOT Wet & Dry Test 18 months test
O47BD -	36.5	52.18	
Control	Low	Very Low	
O47BD- with	27.0	49.55	
E5	Low	Very Low	
O47BD- with	27.24	48.89	
E5	Low	Very Low	
O47BD- with		-4 - 4	In Dronwood
E5 w/ Liquid	42.25 Very Low	71.54 Very Low	In Progress
Fly ash	10. y 20.	ve.y 20	
O47BD-			
Cements			
Decrease 141	36.25 Low	55.04 Very Low	
lbs with E5 w/	20	10. 3 20.1	
Liquid Fly ash			

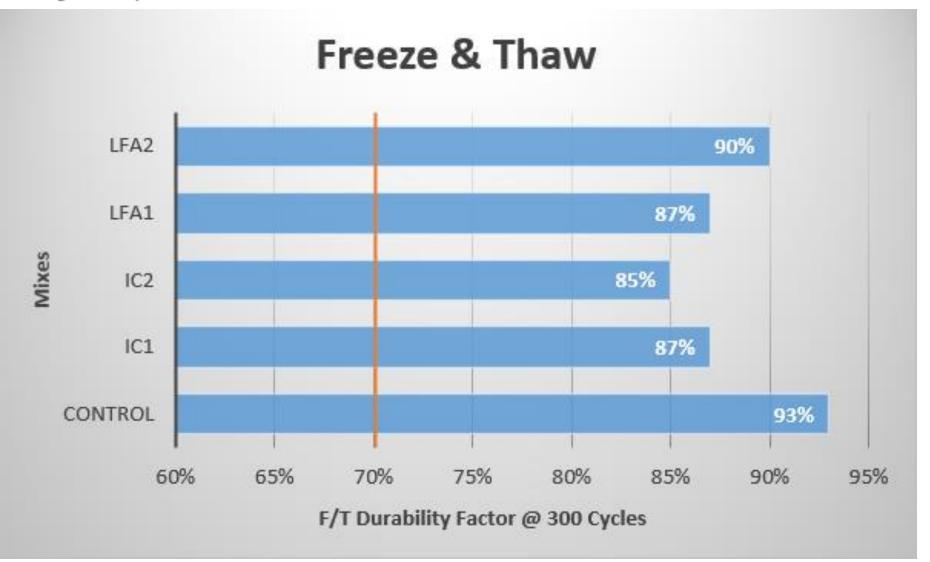
Electrical Resistivity* (kΩ-cm)	Chloride Ion Permeability
<12	High
12-21	Moderate
21-37	Low
37-254	Very Low
>254	Negligible

Durability

Shrinkage Test is a 64 weeks Test

Average of 2 specimens

Mix ID Cements Decrease 94 lbs	Shrinkage ASTM C 157 (Percent length change)	W/SCM Ratio
O47BD – Control	-0.04% @ 32 of 64 weeks	0.43
O47BD- with E5	-0.04%@ 32 of 64 weeks	0.45
O47BD- with E5	-0.06% @ 32 of 64 weeks	0.47
O47BD- with E5 w/ Liquid Fly ash	-0.02% at 32 of 64 weeks	0.45
O47BD-Cements Decrease 141 lbs with E5 w/ Liquid Fly ash	-0.05% @ 32 of 64 weeks	0.48


Controlled Conditions Of Temp. and moisture.

Durability- Freeze & Thaw

Average of 3 specimens

NDOT: Durability factor > 70%

Mass Loss < 5% : Durability Factor

Control Mix – Visual Observation 84 days

O47 BD with E5–
Visual Observation
Internal Curing @ 84 days

047BD with E5 and LFA–
Visual Observation
Internal Curing @ 84 days

Lessons Learned

- Reduction of Cement
 - LCC Mix shows mechanical properties (Compressive Strength, Modulus of Elasticity and Flexure strength) comparable to the 47BD control.
- E5 Mixes
 - Requires more water in the mix
 - Using LFA Improved strength
 - Using E5 with LFA Reduced permeability

NEXT STEPS

- Bridge Division has identified several bridges in District 1 and District 2 to implement a bag (94 pounds) of cement reduction and the use of E5 with LFA.
- District 1
 - Control 47BD standard mix
 - ICE5LF O47BD
- M&R will test fresh properties, mechanical and durability properties for both mixes.
- M&R will follow up with its performance by testing and field Observations.

