

Outline

Research Approach

Literature Review

Basalt-FRP Material Properties

Structural behavior of Bridge Deck Slabs

Conclusions and Future work

Introduction and Objectives

Introduction

- Bridge deck deterioration and FRP materials are of great interest to structural engineers nationally and internationally.
- Most of the research in the literature addresses the mechanical properties of FRP bars or their durability characteristics. None of them studied the effect of the bar size on these characteristics.
- Bridge deck capacity is controlled by the flexural strength, not the punching shear. This research addresses the bridge deck capacity based on the flexural analysis.

Motivation and Objectives

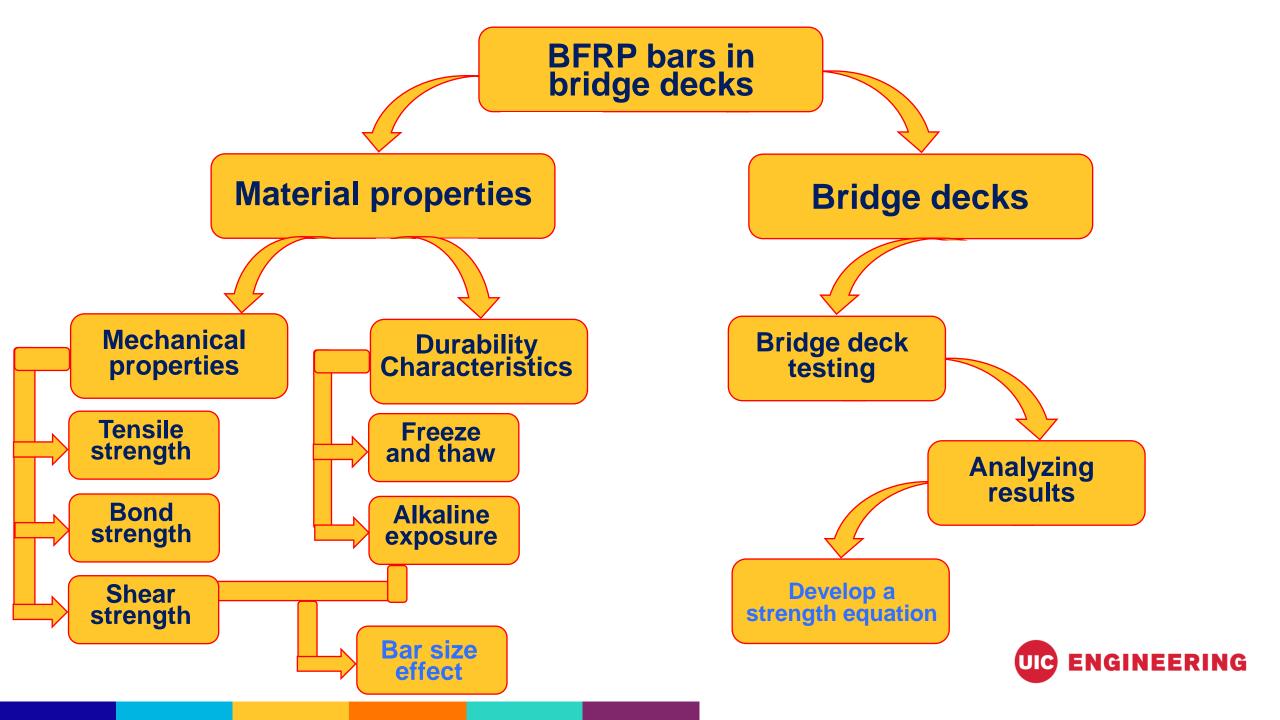
- Understand how BFRP bar sizes influence BFRP bars' durability and mechanical behavior.
- Develop an ultimate strength equation for bridge decks with a span length-to-depth ratio of less than 12.

Outline

Introduction and Background of Basalt-FRP

Research Objectives

Research Approach


Literature Review

Basalt-FRP Material Properties

Structural behavior of Bridge Deck Slabs

Conclusions and Future work

WHY FRP bars?

- Tensile strength is greater than steel, an average of 3 times the steel
- In corrosive environment, service life is much greater than steel (ACI440.1R-15)
- Light-weight: one-fourth to one-fifth the weight of steel reinforcing bars
- Less concrete cover if possible
- Admixtures to reduce corrosion are not needed
- High fatigue endurance

DISADVANTAGES of FRP bars?

- Lower modulus of elasticity than steel (except Carbon-FRP)
- Weak in the transverse direction
- FRP is linear elastic to failure, whereas steel yields (Elastic-plastic behavior)
- FRP is anisotropic, whereas steel is isotropic
- Endurance time in fire is less than in steel
- No considered compression strength

Outline

Introduction and Background of Basalt-FRP

Research Objectives

Research Approach

Literature Review

Basalt-FRP Material Properties

Structural behavior of Bridge Deck Slabs

Conclusions and Future work

Research Approach

This research aims to study the following:

- Understand the mechanical and durability characteristics:
 - 1. Tensile strength
 - 2. Transverse shear strength
 - 3. Bond strength with concrete
 - 4. Alkali resistance
 - 5. Freeze and thaw resistance

Research Approach

Study the behavior of:

- 1. Four full-scale single-span bridge decks reinforced with BFRP reinforcing bars
- 2. Two full-scale, two-span continuous bridge deck slabs reinforced with BFRP bars

Outline

Introduction and Background of Basalt-FRP

Research Objectives

Research Approach

Literature Review

Basalt-FRP Material Properties

Structural behavior of Bridge Deck Slabs

Conclusions and Future work

Literature Review

Tensile strength

Many researchers have covered tensile strength and tensile modulus of elasticity of BFRP reinforcement bars and concluded that the stress is not distributed uniformly across the cross-section and is directly proportional to the fiber content.

Bond and shear strength

Bond and shear strength studies examined the bond and shear strength that varies with the variation of the bar surface, fiber source, and the resin material used.

Durability characteristics

Results of the alkaline-resistance experiment show that basalt and glass fibers seem to have typical failure characteristics. drop in strength, and volumetric stability more rapidly than carbon fiber under harsh alkali conditions.

Bridge deck testing

Most of the studies in the literature tested bridge deck slabs for punching shear failure. Other tests study the arch action mechanism of the bridge deck due to the lower lengthto-depth ratio. However, concrete bridge deck needs to be studied as a flexural element.

Outline

Introduction and Background of Basalt-FRP

Research Objectives

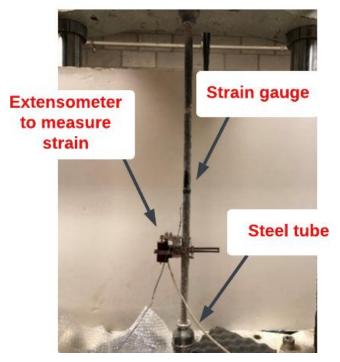
Research Approach

Literature Review

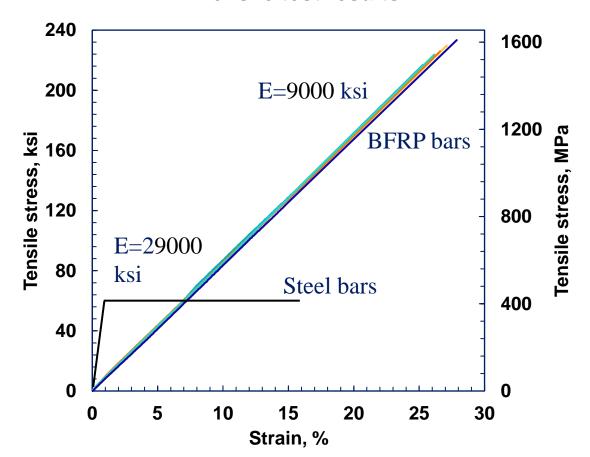
Basalt-FRP Material Properties

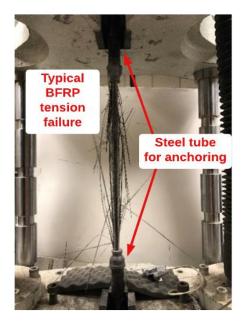
Structural behavior of Bridge Deck Slabs

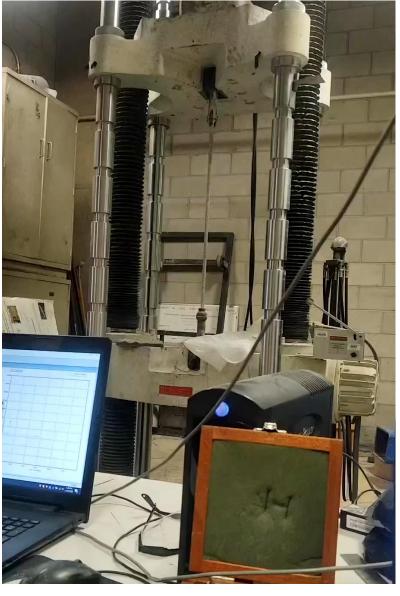
Conclusions and Future work


Mechanical and Durability characteristics of Basalt-FRP bars

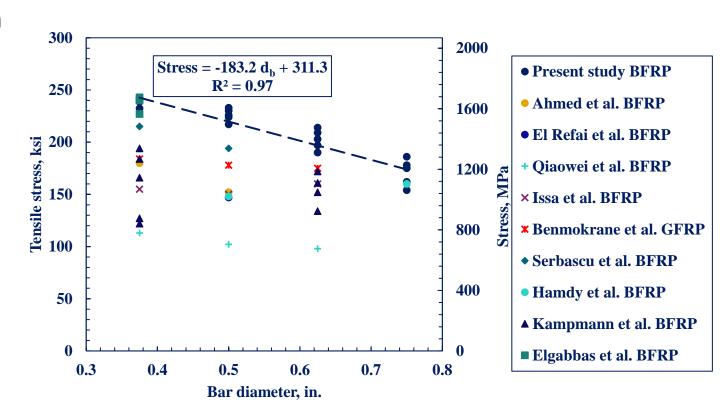
• Universal tensile testing machine was used for the tensile strength testing, which requires special attention at the end of the bars due to the lower shear strength of Basalt-FRP bars.



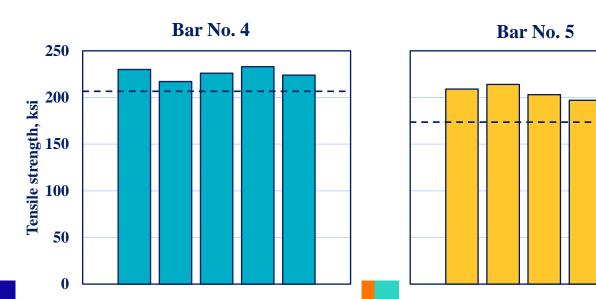



 Testing results showed a linear Stress-Strain relationship of the tested rebars up to failure.

Tensile test results



Bar#	Sample #	Tensile modulus of elasticity, ksi	Average Modulus of Elasticity, ksi	Tensile stress, ksi	Average Tensile stress, ksi	Standard deviation, ksi	Ultimate strain, %	Average Rupture Strain, %
	Sample 1	8473		230			2.71	
	Sample 2	8576	8494	217	226	5.6	2.53	2.66
4	Sample 3	8494		226			2.66	
	Sample 4	8372		233			2.78	
	Sample 5	8555		224			2.62	
	Sample 1	8583		209			2.43	
	Sample 2	8695		214			2.45	
5	Sample 3	8563	8674	203	202	9.5	2.37	2.35
	Sample 4	8725		197			2.27	
	Sample 5	8802		190			2.26	
	Sample 1	8713		162			1.87	
	Sample 2	8729		175			2.04	
6	Sample 3	8808	8798	154	171	11.6	1.78	1.98
	Sample 4	8969		178			2.04	
	Sample 5	8774		186			2.19	


- The tested BFRP rebars showed a very high tensile strength compared to the tested bars in the literature.
- The reason behind this difference is that the bar has no deformation on the surface like steel reinforcement, which means all the fibers are aligned in the vertical direction.



Tensile strength (Acceptance criterion)

- Any tensile test results must satisfy the acceptance criterion of tensile strength for better material production and quality control.
- An existing acceptance criterion for tensile strength of GFRP and CFRP bars, without generalization of this criterion for basalt FRP reinforcing bars, is implemented in ACI 440.1R-15.
- The acceptance criterion is the guaranteed tensile strength, the average tensile strength minus three times the standard deviation.

$$f_{fu} = f_{fu,average} - 3\sigma$$

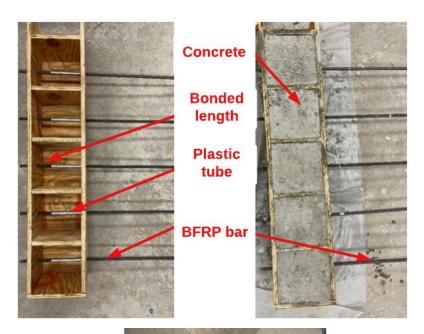
Tensile strength (Acceptance criterion)

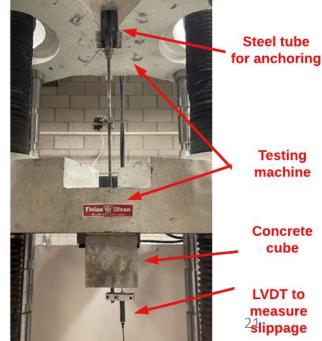
- The guaranteed tensile strength corresponds to 99% of confidence (Rossini et al. 2018).
- A 5% reduction in the ultimate strength will ensure 100% confidence.

$$f'_{fu} < 0.95 f^*_{fu}$$

• Kampmann et al. tested five different bar sources and concluded that two bar sources did not match the guaranteed tensile strength requirement by ACI 440.1R.

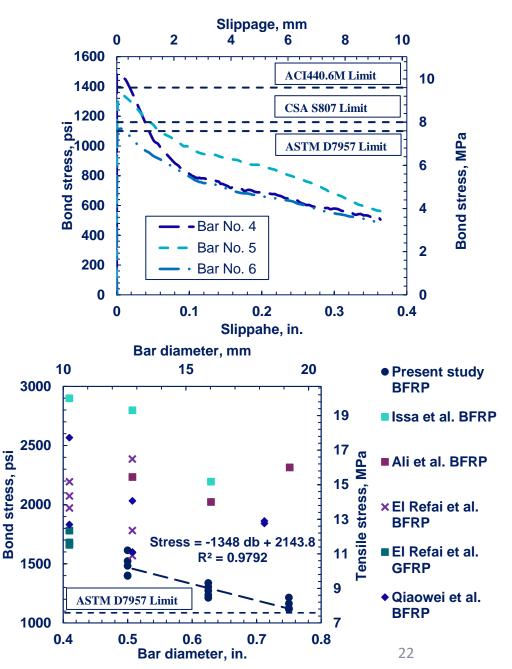
Bond strength

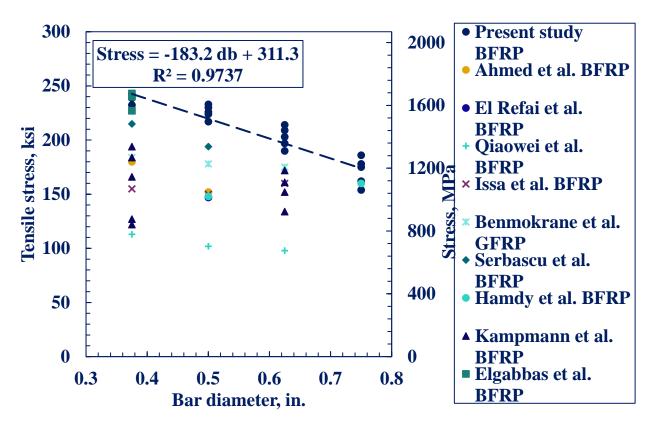

- This test is composed of pulling the bar from an 8" cube of concrete with a bonded length of 5 x bar diameter.
- The bond strength of the BFRP with concrete is calculated according to the following equation:

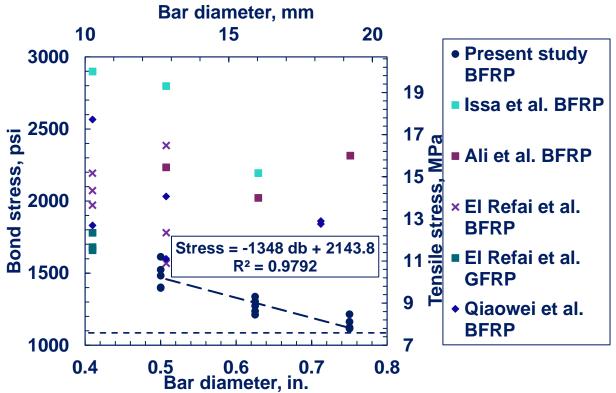

$$\mu = \frac{P_u}{5\pi d_b^2}$$

Where µ: Bond stress, psi,

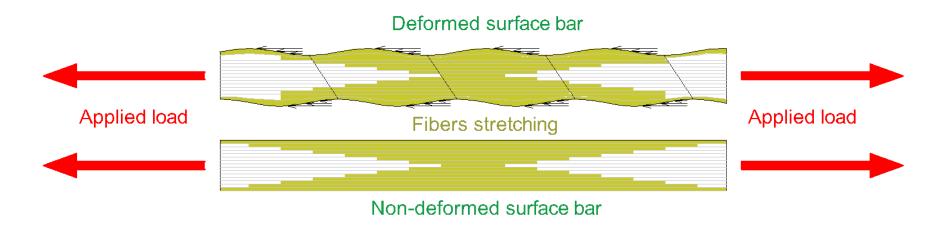
 P_{u} ; Applied load, lb.


 d_b BFRP bar diameter, in.

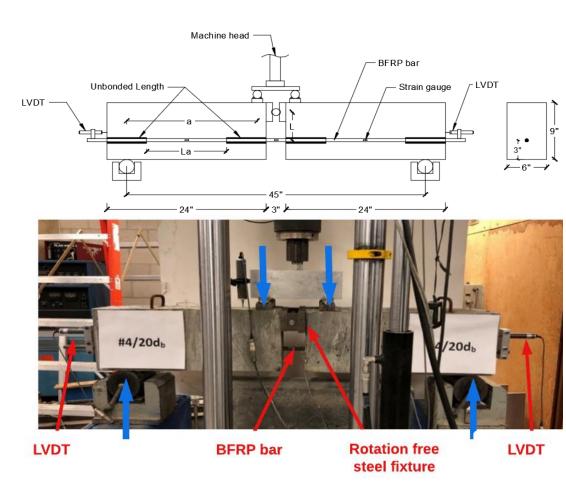



Bond strength

Bar size	Sample No.	Maximum bond stress, psi	Average bond stress, psi	Standard deviation, psi	Coefficient of variation,
	1	1402			
	2	1483			
No. 4	3	1524	1484	181.1	12.2
	4	1397			
	5	1614			
	1	1237			
	2	1338			
No. 5	3	1304	1273	101	7.9
	4	1212			
	5	1273			
	1	1215			
	2	1116			
No. 6	3	1163	1147	84.6	7.4
	4	1119			
	5	1124			


Scientific explanation

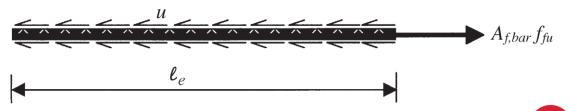
Scientific explanation


- BFRP bar is an anisotropic material. Thus, the stress distribution across the section is not uniform.
- This phenomenon is called the shear lag.
- The figure below illustrates the bond stress distribution on the BFRP bar of the deformed and non-deformed surface.

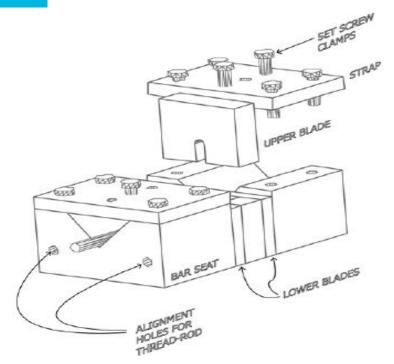
Bond strength

- The beams are composed of two separate parts joined with the BFRP bar in the tension zone and a special fixture in the compression zone that allows rotation, as shown in the Figure.
- The tension force in the rebar and the bond stress can be calculated according to the following equations:

$$T = \frac{Pa}{2L} \quad \text{and} \quad u = \frac{T}{\pi L_a d_b}$$


Bond strength

Based on the bond strength data, the minimum development length should be 39d_b, 40d_b, and 37d_b for bar sizes No. 4, 5, and 6, respectively.


$$l_e = \frac{A_f f_f}{u_f \pi d_b}$$

Where I_e development length
A_f bar area, in²
u_f bond strength, psi
d_b bar diameter, in.

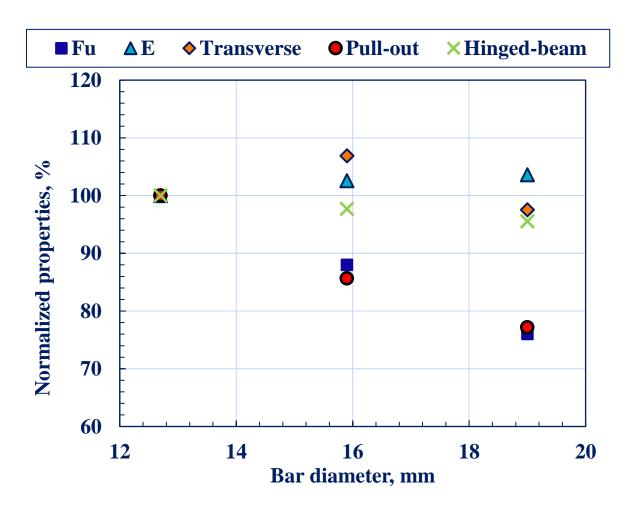
Bar size	Sample No.	Maximum tensile force, kips	Bonde d area, in ²	Maximum bond stress, psi	Average bond stress, psi	Standard deviation , psi	Coefficient of variation, %
	1	14.9	11.77	1266			
4	2	12.2	11.77	1032	1136	108	9.5
4	3	18.6	15.7	1181	1130		
	4	16.7	15.7	1065			
	1	21.2	18.4	1150		42	3.7
5	2	25.8	18.4	1054	1109		
5	3	27.0	24.5	1101	1109		
	4	20.8	24.5	1131			
	1	29.5	26.5	1111		76	
6	2	28.1	26.5	1054	1086 76		6.0
O	3	35.4	35.3	1000		70	6.9
	4	41.6	35.3	1178			

Transverse shear strength

The transverse shear stress exerted on the BFRP bar can be calculated by the following

equation: $\tau_{\rm u} = \frac{P_{\rm S}}{2A}$

where au_u is the transverse shear strength, psi, P_s applied load, lbs., A bar area, in².



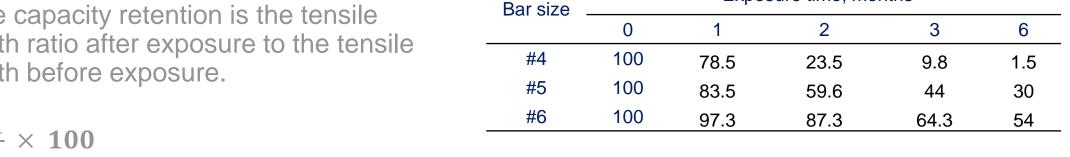
Bar#	Sample #	Maximum applied	Shear area,	Maximum shear stress,	Average shear	Standard deviation,	Coefficient of variation,
		force, kips	in ²	psi	stress, psi	psi	%
	1	12.2	0.40	30,349			
	2	12.2	0.40	30,469			
4	3	11.2	0.40	27,947	29,465	1528	5.1
	4	12.4	0.40	30,888			
	5	11.0	0.40	27,671			
	1	20.0	0.62	32,289			
	2	21.0	0.62	33,823	31,447	1398	
_	3	19.2	0.62	30,982			4.4
5	4	19.4	0.62	31,172			4.4
	5	18.8	0.62	30,377			
	6	18.6	0.62	30,038			
	1	24.4	0.88	27,771			
	2	26.0	0.88	29,509			
6	3	24.2	0.88	27,947	28,757	1406	4.8
	4	27.2	0.88	30,888			27
	5	24.4	0.88	27,671			27

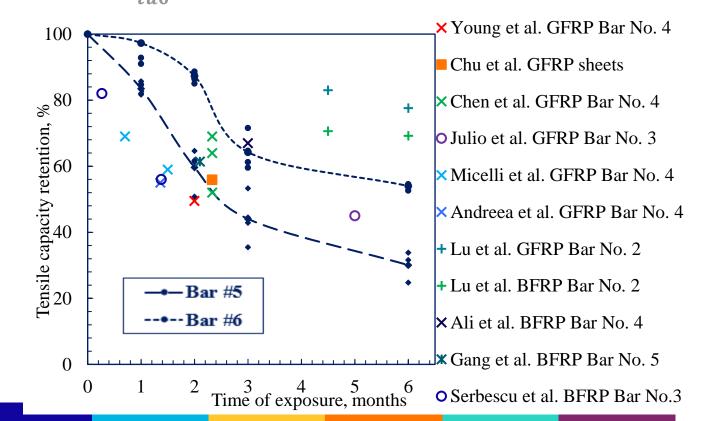
Mechanical properties

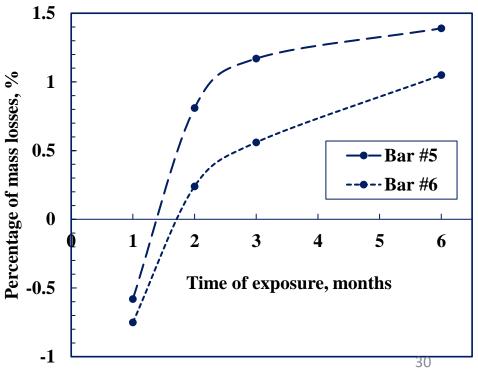
Normalized property is the bar diameter mechanical property divided by the #4 result.

Durability characteristics

- This study aims to
 investigate the degradation
 of strength due to exposure
 to the alkaline solution under
 constant temperature (60°C).
- The solution comprises
 118.5 g of Ca(OH)₂, 0.9 g of
 NaOH, and 4.2 g of KOH per
 1 liter of deionized water,
 and the PH ranges between
 12.6 and 13.0.

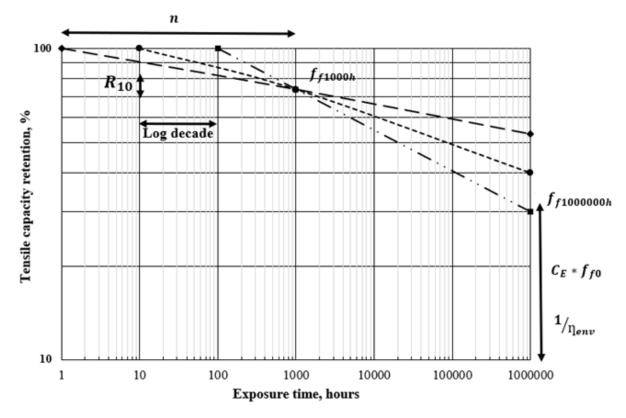





Durability characteristics

Tensile canacity retention is the tensile

strongth ratio after exposure to the tensile	0		
strength ratio after exposure to the tensile strength before exposure.	#4	100	7
strength before exposure.	#5	100	8
$F_{tu1} \sim 100$	#6	100	Ć
$D = \frac{var}{v} \times 100$			



Exposure time, months

Durability characteristics (Predictive model)

- The aim of this predictive model is to compute the C_E (ACI440.1R) factor used in concrete design using FRP materials. This factor is the reduction factor of the bar ultimate strength due to environmental conditions.
- The two assumptions for this model are:
 - 1. The degradation onset is at PH7 and 20°C.
 - 2. A conditioning period of 1,000 h is sufficient for the chemical reactions to stabilize and enable long-term predictions.

Durability characteristics (Predictive model)

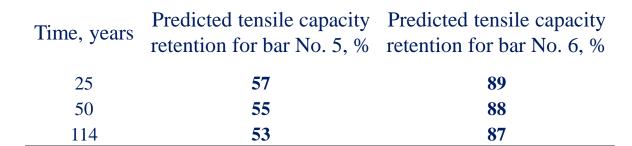
Degradation parameter n

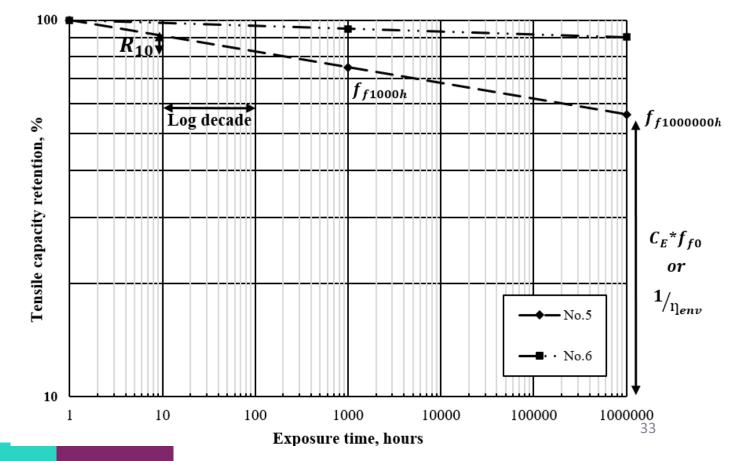
$$n = n_{mo} + n_{T} + n_{t} + n_{pH} + n_{d} + n_{on} \ge 1$$
 (no unit)

- In this study, the tested rebars were conditioned in a saturated environment (n_{mo} = 1), pH = 13 (n_{pH} = 1), exposure time equal 1,000 h (n_t = 0), the diameter of the tested rebar for reference is equal to the conditioned rebar (n_d = 0), exposure temperature is 60°C (n_T = 2.5), $f_{fk ref}$ = f_{fk0} (n_{on} = -1.5).
- This factor n (n=3) represents the position of the second point graphically connected to f_{f1000h} for the stress prediction.

Degradation parameter	Range	Value
Moisture RH (n _{mo})	Dry (50%)	-1
	Moist (80%)	0
	Saturated (100%)	1
PH (n _{pH})	7	0
	10	0.5
	13	1
Time (n _t)	≤1,000 h	0
	≥1,000 h	Log(h/1,000)
Diameter (n _d)	≥tested	0
	~75% tested	0.5
	~50% tested	1
Temperature (n _T)	0°C	-0.5
	10°C	0
	20°C	0.5
	30°C	1
	40°C	1.5
	50°C	2
	60°C	2.5
Onset (n _{on})	$f_{fk ref} = f_{fk0}$	-1.5
	$f_{fk ref} \neq f_{fk0}$	32 N _{on,opt}

Durability characteristics (Predictive model)


$$m = \frac{\log(f_0) - \log(f_{f1000h})}{\log(1) - \log(1000)}$$


$$R_{10} = 100 - (10^m * 100)$$

$$n = n_{mo} + n_T + n_t + n_{pH} + n_d + n_{on}$$

$$\eta_{env} = \frac{1}{[(100 - R_{10})/100]^n}$$

$$f_{f,t\%} = \left(\frac{1}{\eta_{env}}\right) * 100$$

Durability characteristics (Freeze and thaw)

- This study investigates the freeze and thaw resistance of unidirectional pultrall BFRP bars from -4 °F to 73 °F for 100 cycles by freezing in air and thawing in water.
- The percentage of loss of bars #4, #5, and #6 are 3.1%, 7.4%, and 4.3%, with no significant mass loss.

Chamber	-	
		DIC SALES SA
 - Indiana		
		19 9
		0 5
and the second		

	Cantual as			E			
	Control sp	pecimens		Exposed sp	pecimens		
Bar #	Tensile modulus of elasticity, ksi	Tensile stress, ksi	Tensile modulus of elasticity, ksi	Tensile stress, ksi	Standard deviation, ksi	Coefficient of variation, %	Percentage of tensile stress loss, %
4	8494	226	8578	218.9	9.8	4.5	3.1
5	8674	202	8481	187.1	7.7	4.1	7.4
6	8798	171	8724	163.5	10.2	6.2	4.3

Outline

Introduction and Background of Basalt-FRP

Research Objectives

Research Approach

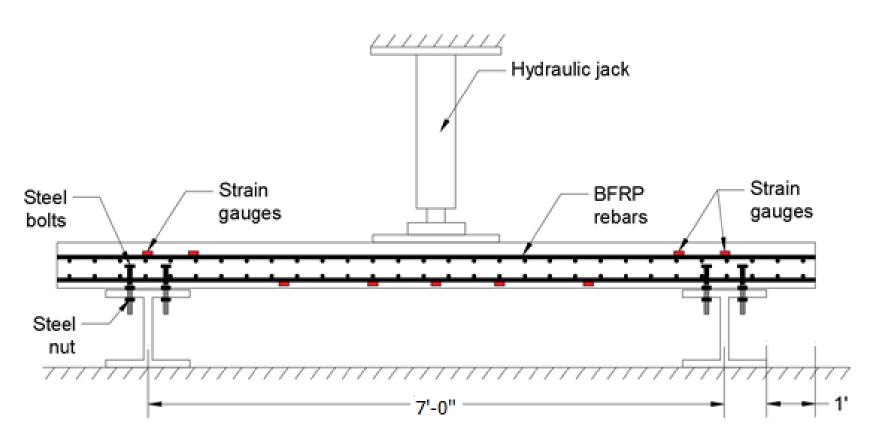
Literature Review

Basalt-FRP Material Properties

Structural behavior of Bridge Deck Slabs


Conclusions and Future work

Structural Behavior of Bridge Deck Slabs Reinforced with Basalt-FRP Bars as Internal Reinforcement


Structural behavior of bridge decks

- The second phase of this research
 is testing six full-scale bridge deck
 slabs under static loading of two
 different BFRP bar sizes, bar
 spacing, and continuity conditions.
- To the authors' best knowledge, only one research tested a bridge deck slab reinforced with a Basalt-FRP bar (Elgabbas et al., 2015).

(Elgabbas et al., 2015).

Structural behavior of bridge decks

Slabs design

Unlike steel, the BFRP reinforcement ratio must exceed the value of the balanced conditions due to the lower modulus of elasticity

$$\rho_{fb} = 0.85 \beta_1 \frac{f'_c}{f_{fu}} \frac{E_f \mathcal{E}_{cu}}{E_f \mathcal{E}_{cu} + f_{fu}}$$

Bridge Deck Slabs	Length, ft	Width, ft	Continuity condition	Span length, ft	Transverse bottom reinforcement	Transverse top reinforcement	Longitudinal and transverse top reinforcement	
SS1	10'	4'	Single-span	7'	No.5@4"	No.5@4"	No.5@4"	
SS2	10'	4'	Single-span	7'	No.5@6"	No.5@6"	No.5@6"	
SS3	10'	4'	Single-span	7'	No.5@8"	No.5@8"	No.5@8"	
SS4	10'	4'	Single-span	7'	No.6@6"	No.5@6"	No.5@6"	
TS5	18'	10'	Two-span	7.5'	No.5@4"	No.5@4"	No.5@6"	
TS6	18'	10'	Two-span	7.5'	No.5@6"	No.5@6"	No.5@8"	

Slabs design

BFRP Design

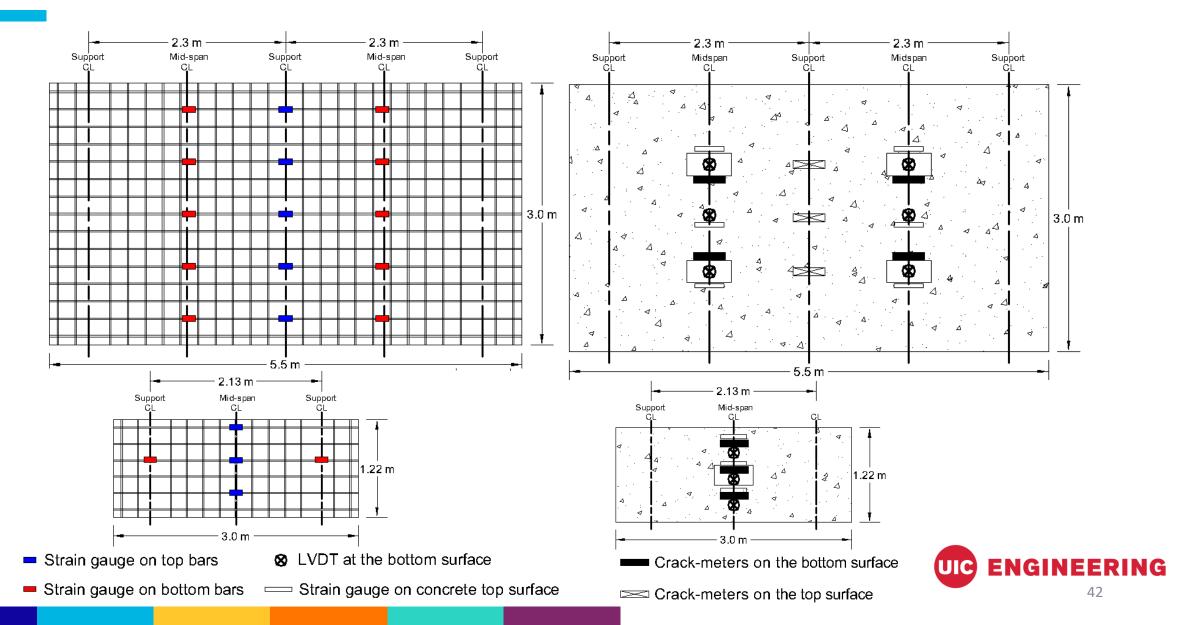
$$\rho_{fb} = 0.85\beta_1 \frac{f_c'}{f_{fu}} \frac{E_f \mathcal{E}_{cu}}{E_f \mathcal{E}_{cu} + f_{fu}} \approx 0.24\%$$

- Flexural-shear failure
- $\Phi = 0.65$ (Strength reduction factor)
- Over-reinforced section
- Reinforcement tensile strength ≈ 200ksi
 Reinforcement tensile strength = 60ksi
- $n_f = \frac{E_f}{E_c} = 2.2$ (Modular ratio)

Steel Design

$$\rho_{fb} = 0.85 \beta_1 \frac{f'_c}{f_v} \frac{\epsilon_{cu}}{\epsilon_{cu} + \epsilon_s} \approx 5.44\%$$

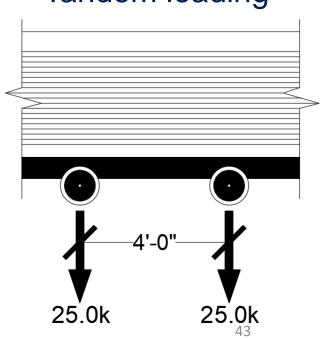
- Failure in the tension zone
- $\Phi = 0.9$ (Strength reduction factor)
- Under-reinforced section


•
$$n_S = \frac{E_S}{E_C} = 7$$
 (Modular ratio)

Slabs design

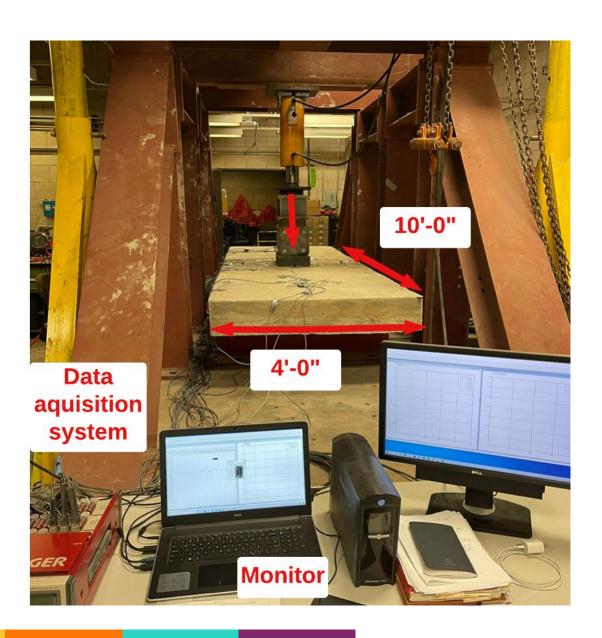
• The concrete compressive strength used in the slab ranges between 6.5 and 7.1 ksi with a water-cement ratio of 0.44, 6 inches slump, and 6% air-entrained.

Slab Prototype	f' _c ksi	Bar size	f _{fu} ksi	E _f , ksi	$\epsilon_{ m cu}$ in./in.	β_1	$\begin{array}{c} \rho_b \\ \% \end{array}$	ρ %	ρ/ρ_b
SS 1	7.12	#5	202	8673	0.003	0.69	0.237	1.159	4.88
SS 2	6.95	#5	202	8673	0.003	0.7	0.234	0.773	3.3
SS 3	6.5	#6	171	8798	0.003	0.72	0.313	1.107	3.53
SS 4	6.35	#5	202	8673	0.003	0.73	0.223	0.579	2.59
TS 5	6.95	#5	202	8673	0.003	0.7	0.234	1.159	4.94
TS 6	6.5	#5	202	8673	0.003	0.72	0.226	0.773	3.42

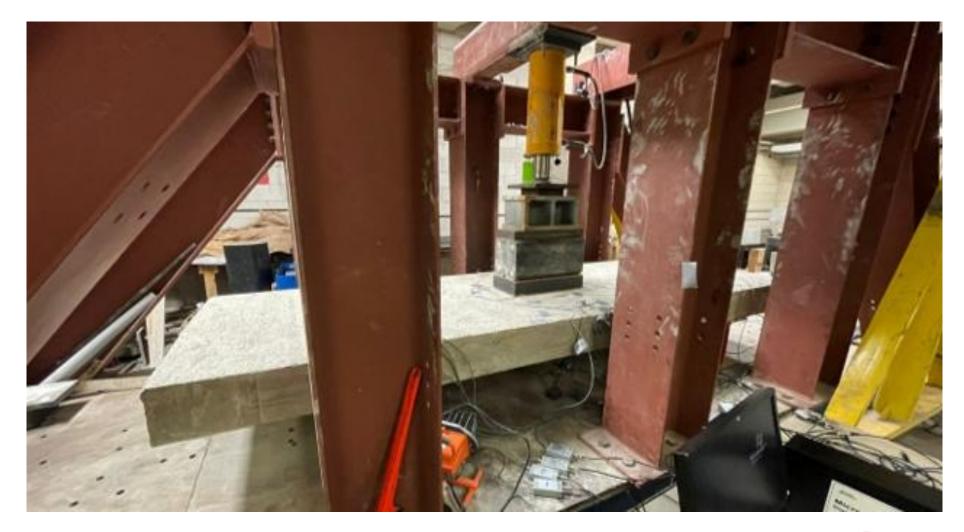

Instrumentation plan

Structural behavior of bridge decks

- The single-span bridge deck was supported on two steel sections bolted to the steel bed.
- The slab thickness was selected to keep the ratio of supporting-beam spacing to slab
 thickness less than 12 and to represent the most commonly used size of the concrete
 bridge deck in North America.


 Tandem loading
- The width of the two-span bridge deck slab is 10 ft to account for the tandem loading with four points loading (2 on each midspan).
- Four-point loading will be applied to the slab with two points on each mid-span.

Testing setup



Testing setup



Testing setup

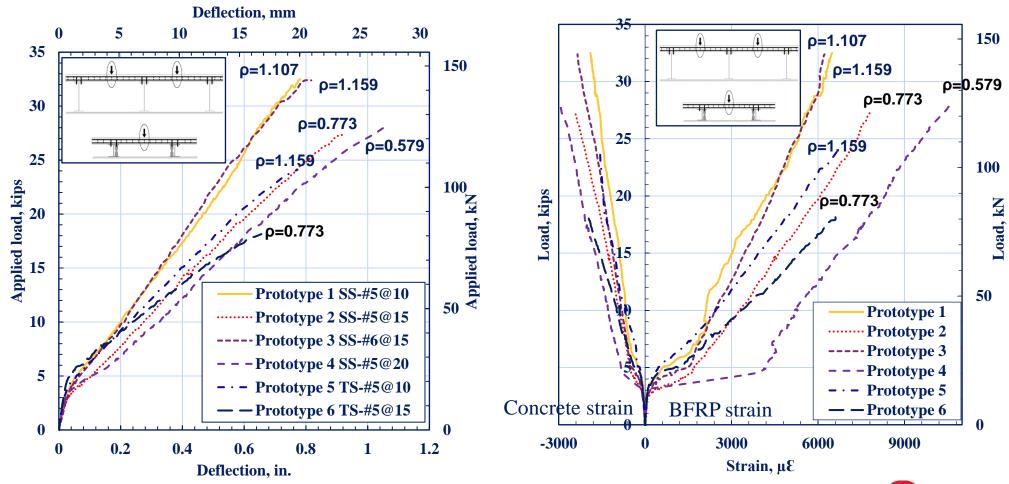
Slab failure mode

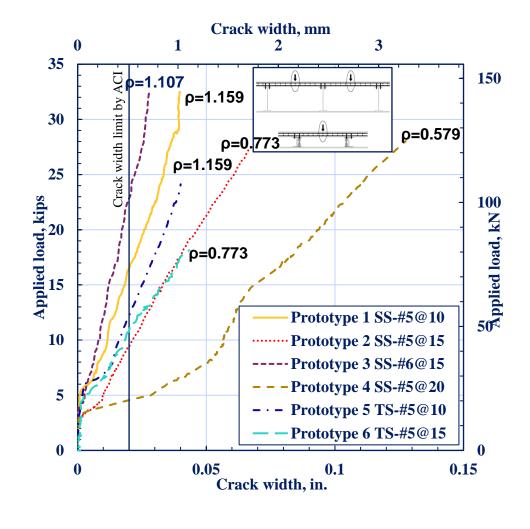
Slab failure mode

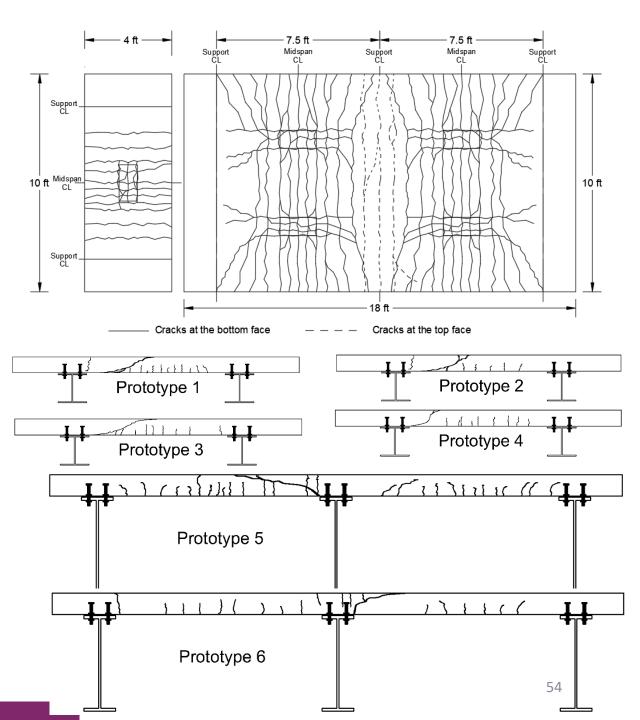
Slab failure mode

Cracking load calculation

For the calculation of cracking load, the following calculation was derived:

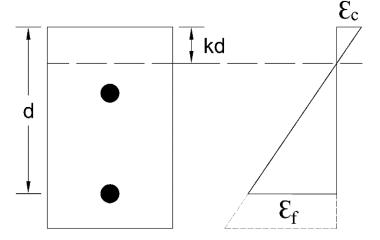

$$\sigma_{cr} = \frac{M \cdot c}{I}$$
 , $I = \frac{b \cdot h^3}{12}$, $c = \frac{h}{2}$, $\sigma_{cr} = 7.5 \times \sqrt{f'_c}$


$$b = 12 in.$$
 $h = 8 in.$ $c = 4 in.$


$$P_{cr} = 3.68 \, kips/ft$$

Slab Prototype	Cracking load, kips	Cracking load per foot, kips	Ultimate load, kips	Ultimate load per foot, kips	Failure mode
SS 1	13.5	3.37	130	32.5	Flexural-shear
SS 2	11.8	2.97	109	27.4	Flexural-shear
SS 3	14.2	3.52	129	32.4	Flexural-shear
SS 4	12.9	3.20	112	28.0	Flexural-shear
TS 5	33.0	3.30	241	24.1	Flexural-shear
TS 6	41.5	4.18	181	18.1	Flexural-shear

Slab Prototype	Deflection at cracking load, x10 ³ in	Maximum deflection at ultimate load, in	Strain in BFRP at cracking load, µE	Maximum strain in BFRP at ultimate load, με	Strain in concrete at cracking load, µE	Maximum strain in concrete at ultimate load, με	Maximum crack width at ultimate load, x10 ⁻³ in
SS 1	26.7	0.78	163	6549	87	1921	39.3
SS 2	29.5	0.92	269	7835	109	2339	67.3
SS 3	37.4	0.82	377	6187	168	2224	27.9
SS 4	21.5	1.05	133	10597	112	2951	127.6
TS 5	21.1	0.77	237	6720	92	1572	40.2
TS 6	22.8	0.66	330	6604	143	1961	43.3


- Several predictive models have been generated to account for the punching shear capacity of bridge deck slabs reinforced with FRP bars (El-Gamal et al., 2005, Peled et al., 1999, Ospina et al., 2003, El-Ghandour et al., 1999).
- Since bridge deck slabs have been designed as a flexural element, it is essential to study the flexural shear capacity for a better understanding of the behavior and to ease the design of the bridge deck using FRP materials as a main reinforcement.
- ACI440.1R existing equation:

$$V_{c,ACI440.1R} = \frac{2}{5} \sqrt{f'_c} b_0 k d$$
 ; $k = \sqrt{2\rho_f n_f + (\rho_f n_f)^2} - \rho_f n_f$

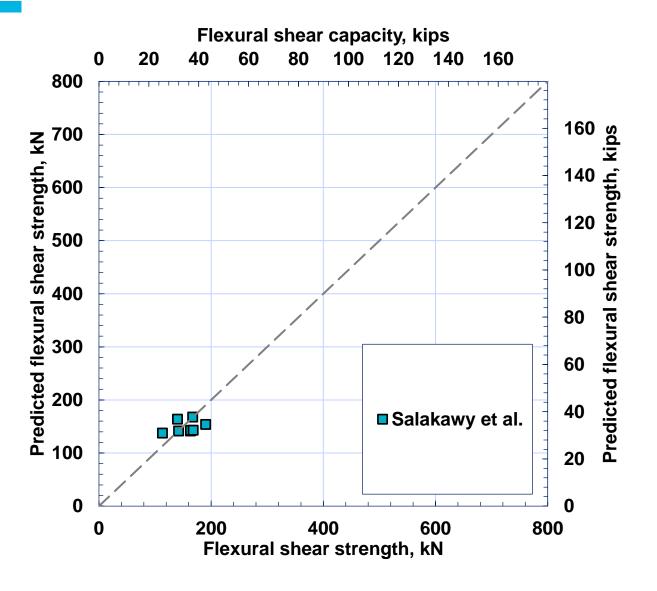
Parameters in the proposed equation

- Span length
- Concrete compressive strength
- Modulus of elasticity of FRP bars
- Reinforcement ratio

Parameters in the proposed equation

- Span length
- Concrete compressive strength
- Modulus of elasticity of FRP bars
- Reinforcement ratio

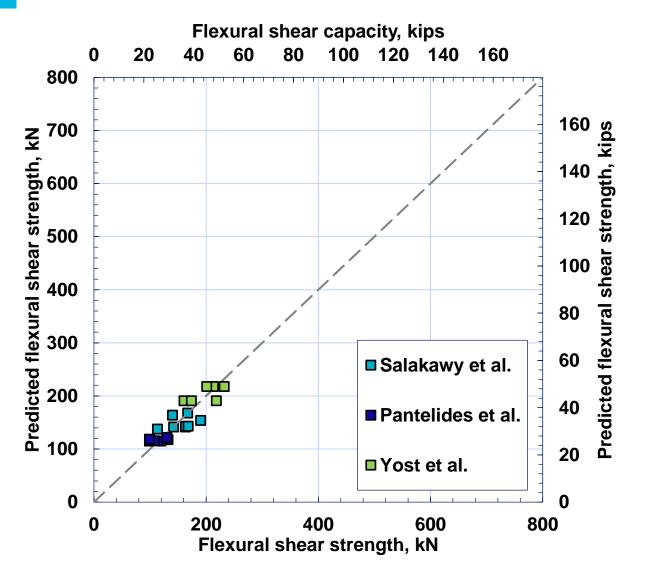
$$V_c = \frac{2}{5} \sqrt{f'_c} b_0 kd \alpha (1.2)^N$$

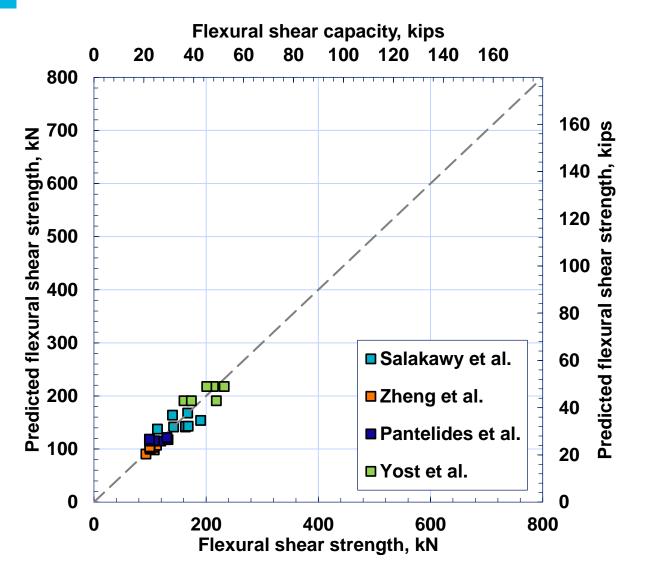

$$lpha = 10 \left(\frac{1}{
ho}\right)^{0.415} \left(\frac{1}{s}\right)^{2.216} \left(\frac{1}{E_f}\right)^{0.261} \left(\frac{1}{f_c'}\right)^{0.122}$$

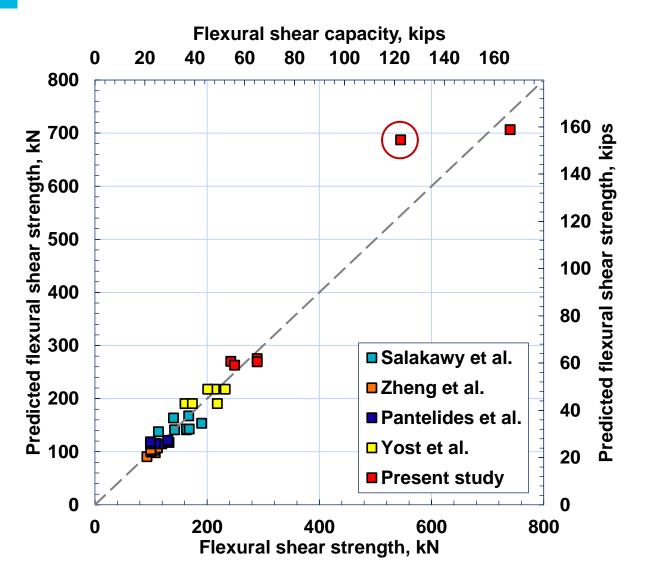
Structural behavior of bridge decks

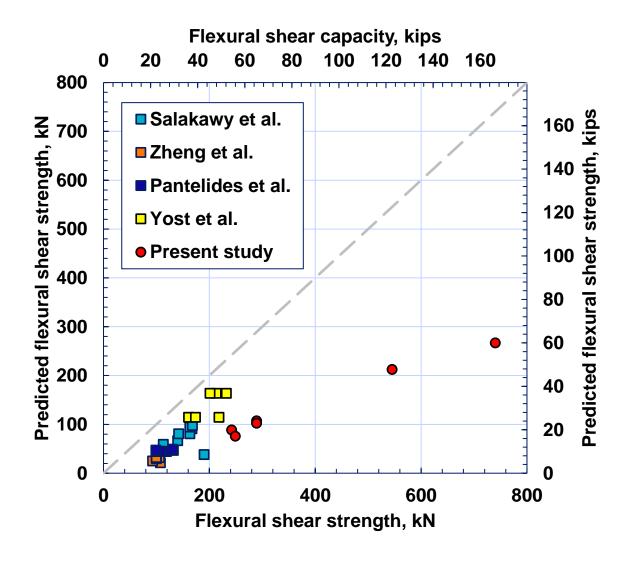
The proposed equation was validated using four research projects from the literature that used FRP bars as the main reinforcement in bridge decks.

- El-Sayed et al.
- Zheng et al.
- Pantelides et al.
- Yost et al.
- Present study


		V _{test}	b ₀ , m	d, cm	fc, MPa		Spanm	$E_{\rm f}$		ACI440.1R-15 Proposed equation			
Refere	nce	kN (kips)	(ft)	(in)	(ksi)	ρ, %	(ft)	GPa (ksi)	N	V_{theort}	V_{test}/V_{theort}	V_{theort}	V_{test}/V_{theort}
	S-C1	140 (31.5)	(3.3)	16.6 (6.5)	40 (5.8)	0.39	2.5 (8.2)	114 (16534)	0	66.6 (15)	2.10	163.7 (36.8)	0.86
	S-C2B	167	1	16.6	40	0.78	2.5	114	0	90.9	1.84	167.5	1.00
		(37.5) 190	(3.3)	(6.5) 16.6	(5.8) 40		(8.2) 2.5	(16534) 114		(20.4) 38.1		(37.7) 153.8	
	S-C3B	(42.7)	(3.3)	(6.5)	(5.8)	0.12	(8.2)	(16534)	0	(8.56)	4.99	(34.6)	1.24
	S-G1	113 (25.4)	(3.3)	16.6 (6.5)	40 (5.8)	0.86	2.5 (8.2)	40 (5801)	0	59.2 (13.3)	1.91	137.6 (31.0)	0.82
El-Sayed et al.	S-G2	142	1	16.6	40	1.7	2.5	40	0	80.7	1.76	141.4	1.00
		(31.9) 163	(3.3)	(6.5) 16.6	(5.8) 40		(8.2) 2.5	(5801) 40		(18.1) 80.9		(31.8) 141.4	
	S-G2B	(36.6)	(3.3)	(6.5)	(5.8)	1.71	(8.2)	(5801)	0	(18.2)	2.01	(31.8)	1.15
	S-G3	163 (36.6)	(3.3)	16.6 (6.5)	40 (5.8)	2.44	2.5 (8.2)	40 (5801)	0	94.7 (21.3)	1.72	142.7 (32.1)	1.14
	C C2D	168	(3.3)	16.6	40	2.62	2.5	40	0	97.8	1.72	143.0	1 10
	S-G3B	(37.8)	(3.3)	(6.5)	(5.8)	2.63	(8.2)	(5801)	0	(22.0)	1.72	(32.1)	1.18
	CG10	107.5 (24.2)	0.5 (1.6)	16 (6.3)	73 (10.6)	0.3	2.14 (7)	44.6 (6469)	0	21.4 (4.81)	5.02	98.4 (22.1)	1.09
	CG11	105.5	0.5	16	71.7	0.7	2.14	44.6	0	31.9	3.31	103.2	1.02
		(23.7) 111.5	(1.6) 0.5	(6.3) 16	(10.4) 74.4		(7) 2.14	(6469) 44.6		(7.17) 44.4		(23.2) 107.2	
	CG12	(25.1)	(1.6)	(6.3)	(10.8)	1.4	(7)	(6469)	0	(10.0)	2.51	(24.1)	1.04
Zheng et al.	CG14	92.5 (20.8)	0.5 (1.6)	16 (6.3)	29.52 (4.28)	0.7	2.14 (7)	44.6 (6469)	0	25.1 (5.64)	3.68	90.6 (20.4)	1.02
	CG15	100	0.5	16	56	0.7	2.14	44.6	0	29.9	3.35	99.5	1.00
	CGIS	(22.8) 99.5	(1.6) 0.5	(6.3) 16	(8.12) 67.7	0.7	(7) 2.14	(6469) 44.6	o	(6.72) 31.4	5.55	(22.4) 102.3	1.00
	CG16	(22.4)	(1.6)	(6.3)	(9.82)	0.7	(7)	(6469)	0	(7.06)	3.17	(23.2)	0.97
	CG19	99.5 (22.4)	0.5 (1.6)	16 (6.3)	75.37 (10.9)	0.7	2.14	44.6 (6469)	0	32.3	3.08	103.9 (23.4)	0.96
	SP-1-NW	119	0.61	20.2	60	0.65	(7) 2.44	43.3	0	(7.26) 44.6	2.67	114.8	1.04
	SP-1-NW	(26.7)	(2)	(7.95)	(8.7)	0.65	(8)	(6280)	U	(10.0)	2.67	(25.8)	1.04
	SP-2-NW	132 (29.7)	0.61 (2)	20.2 (7.95)	71 (10.3)	0.65	2.44 (8)	43.3 (6280)	0	46.6 (10.0)	2.83	117.7 (26.5)	1.12
	SP-3-NW	130	0.61	20.2	89	0.65	2.44	43.3	0	49.5	2.63	121.5	1.07
Pantelides et al.		(29.2) 108	(2) 0.61	(7.95) 20.2	(12.9) 63		(8) 2.44	(6280) 43.3		(11.1) 45.2		(27.3) 115.6	
	SP-4-LW	(24.3)	(2)	(7.95)	(9.1)	0.65	(8)	(6280)	0	(10.2)	2.39	(26.0)	0.93
	SP-5-LW	99 (22.2)	0.61 (2)	20.2 (7.95)	60 (8.7)	0.65	2.44 (8)	43.3 (6280)	0	44.6 (10.0)	2.22	114.8 (25.8)	0.86
	SP-6-LW	99	0.61	20.2	75	0.65	2.44	443.3	0	47.3	2.09	118.6	0.83
		(22.2) 218	(2) 1.22	(7.95) 17.7	(10.9)	0.03	(8)	(6280) 41.3		(10.6) 114.4	2.09	(26.7) 190.8	0.83
	H1	(49)	(4)	(6.97)	(4.79)	2.26	(8)	(5990)	0	(25.7)	1.90	(42.9)	1.14
	H2	160.5	1.22	17.7	33	2.26	2.44	41.3 (5990)	0	114.4	1.40	190.8	0.84
	112	(36.0) 173.5	(4) 1.22	(6.97) 17.7	(4.79) 33	2.26	(8) 2.44	41.3	0	(25.7) 114.4	1.50	(42.9) 190.8	0.01
Yost et al.	Н3	(39)	(4)	(6.97)	(4.79)	2.26	(8)	(5990)	0	(25.7)	1.52	(42.9)	0.91
	C1	232 (52.2)	1.22 (4)	0.18 (7.09)	33 (4.79)	2.48	2.44 (8)	85 (12328)	0	163.9 (36.8)	1.42	217.7 (48.9)	1.07
	C2	213	1.22	0.18	33	2.48	2.44	85	0	163.9	1.30	217.7	0.98
		(47.9) 201	(4) 1.22	(7.09) 0.18	(4.79) 33		(8) 2.44	(12328) 85		(36.8) 163.9		(48.9) 217.7	
	C3	(45.2)	(4)	(7.09)	(4.79)	2.48	(8)	(12328)	0	(36.8)	1.23	(48.9)	0.92
	P1	289 (65.0)	1.22 (4)	17 (6.69)	49.1 (7.12)	1.16	2.13	59.8 (8674)	0	107.5 (24.2)	2.69	275.5 (62.0)	1.05
	P2	242	1.22	17	47.9	0.77	2.13	59.8	0	88.8	2.72	270.2	0.90
		(54.4) 289	(4) 1.22	(6.69) 16.8	(6.95) 44.8		(7) 2.13	(8674) 60.7		(20.0) 102.4		(60.7) 269.4	
Present study	P3	(65.0)	(4)	(6.61)	(6.5)	1.11	(7)	(8798)	0	(23.0)	2.82	(60.6)	1.07
2 resem study	P4	249 (55.5)	1.22	17 (6.69)	43.8 (6.35)	0.58	2.13 (7)	59.8 (8674)	0	75.9 (17.1)	3.28	263.2 (59.2)	0.95
	P5	740	3.0	17	47.9	1 16	2.3	59.8	1	266.9	2.77	706.5	1.04
	ro	(166)	(10)	(6.69)	(6.95)	1.16	(7.5)	(8674)	1	(60.0)	2.77	(159)	1.04
	P6	545 (122)	3.0 (10)	17 (6.69)	44.8 (6.5)	0.73	2.3 (7.5)	59.8 (8674)	1	212.5 (47.8)	2.56	687.1 (154)	0.79
Average											2.50	58	1.00
SD COV, %											0.906 36		0.109 10.9


- The more the point is close to the y=x, the more accurate the equation is.
- The average ratio of the proposed flexural capacity to the experimental results is 1.00 compared to 2.5 with ACI, with a coefficient of variation of 10.8% compared to 36% in the ACI equation.
- The only red point shown in the figure represents Prototype 6 in the present study, which was expected to have higher capacity.


- The more the point is close to the y=x, the more accurate the equation is.
- The average ratio of the proposed flexural capacity to the experimental results is 1.00 compared to 2.5 with ACI, with a coefficient of variation of 10.8% compared to 36% in the ACI equation.
- The only red point shown in the figure represents Prototype 6 in the present study, which was expected to have higher capacity.


- The more the point is close to the y=x, the more accurate the equation is.
- The average ratio of the proposed flexural capacity to the experimental results is 1.00 compared to 2.5 with ACI, with a coefficient of variation of 10.8% compared to 36% in the ACI equation.
- The only red point shown in the figure represents Prototype 6 in the present study, which was expected to have higher capacity.

- The more the point is close to the y=x, the more accurate the equation is.
- The average ratio of the proposed flexural capacity to the experimental results is 1.00 compared to 2.5 with ACI, with a coefficient of variation of 10.8% compared to 36% in the ACI equation.
- The only red point shown in the figure represents Prototype 6 in the present study, which was expected to have higher capacity.

- The more the point is close to the y=x, the more accurate the equation is.
- The average ratio of the proposed flexural capacity to the experimental results is 1.00 compared to 2.5 with ACI, with a coefficient of variation of 10.8% compared to 36% in the ACI equation.
- The only circled point shown in the figure represents Prototype 6 in the present study, which was expected to have higher capacity.

- The more the point is close to the y=x, the more accurate the equation is.
- The average ratio of the proposed flexural capacity to the experimental results is 1.00 compared to 2.5 with ACI, with a coefficient of variation of 10.8% compared to 36% in the ACI equation.
- The only red point shown in the figure represents Prototype 6 in the present study, which was expected to have higher capacity.

Outline

Introduction and Background of Basalt-FRP

Research Objectives

Research Approach

Literature Review

Basalt-FRP Material Properties

Structural behavior of Bridge Deck Slabs

Conclusions and Future work

Conclusions

As an outcome of this research, the following conclusions have been derived:

- The impact of bar size on the mechanical properties of Basalt-FRP bars was found to vary. While ultimate <u>tensile strength</u> increased with larger bar sizes, <u>bond strength</u> <u>and tensile modulus of elasticity decreased</u>. However, shear strength and fiber content remained consistent regardless of bar size.
- The impact of exposure to alkaline on durability was found to vary depending on the size of the bar, according to the results. The BFRP bar <u>#6</u> was found to retain <u>87%</u> of its ultimate tensile strength, while <u>#5</u> retained <u>53%</u>, as predicted by the model. Despite this, the BFRP bars were found to have a high resistance to freeze and thaw cycles, and their tensile strength did not decrease significantly.
- When studying concrete bridge decks reinforced with Basalt-FRP bars, it was
 discovered that flexural-shear failure was the most common type of failure. An
 empirical equation was created to calculate the ultimate carrying capacity, which
 showed a high level of agreement with existing literature data, with a coefficient of
 variation of 10.8%.