



























There are 2 types of Natural Pozzolans (NP):

**1.Raw NP** (Volcanic ejecta-based materials – pumice, pumicite, volcanic ash, etc. Pre-calcined by Mother Nature)

2.Calcined NP (such as MetaKaolin)









Hoover Dam, and hundreds of other infrastructure, projects used natural pozzolan. Picture/USBR



Glen Canyon dam used several hundred thousand tons of natural pozzolan in its construction.



Arizona, circa 1960















First US-based NP production facility dedicated solely to producing natural pozzolan (2018). There are more to follow - 3 more by the end of 2022.













|                      | Sample Date: 8/9 - 8/11/15                                       |                 | MTRF ID:             |                      |                     |
|----------------------|------------------------------------------------------------------|-----------------|----------------------|----------------------|---------------------|
|                      | Sample ID:                                                       |                 |                      |                      |                     |
|                      |                                                                  |                 | ASTM / AAS           | SHTO Limits          | ASTM Test           |
|                      | Chemical Analysis                                                |                 | Class F              | Class C              | Method              |
|                      | Silicon Dioxide (SiO2)                                           | <u> </u>        |                      |                      |                     |
|                      | Aluminum Oxide (Al2O3)                                           | 23.01 %         |                      |                      |                     |
|                      | Iron Oxide (Fe2O3)                                               | 4.47 %          |                      |                      |                     |
|                      | Sum of Constituents                                              | 87.21 %         | 70.0% min            | 50.0% min            | D4326               |
|                      | Sulfur Trioxide (SO3)                                            | 0.37 %          | 5.0% max             | 5.0% max             | D4326               |
|                      | Calcium Oxide (CaO)                                              | 4.84 %          |                      |                      | D4326               |
|                      | Moisture                                                         | 0.05 %          | 3.0% max             | 3.0% max             | C311                |
|                      | Loss on Ignition                                                 | 0.85 %          | 6.0% max<br>5.0% max | 6.0% max<br>5.0% max | C311<br>AASHTO M295 |
|                      | Available Alkalies, as Na2Oe<br>When required by purchaser       | 1.36 %          | not re<br>1.5% max   | quired<br>1.5% max   | C311<br>AASHTO M295 |
|                      | Physical Analysis                                                | _               |                      |                      |                     |
|                      | Fineness, % retained on #325                                     | %               | 34% max              | 34% max              | C311, C430          |
| Typical<br>Class F – | Strength Activity Index - 7 or 28 day rec<br>7 day, % of control | uirement<br>84% | 75% min              | 75% min              | C311, C109          |
| Fly Ash              | 28 day, % of control                                             | 84%             | 75% min              | 75% min              |                     |
|                      | Water Requirement, % control                                     | 95%             | 105% max             | 105% max             |                     |
|                      | Autoclave Soundness                                              | 0.00 %          | 0.8% max             | 0.8% max             | C311, C151          |
|                      | Density                                                          | 2.25            |                      |                      | C604                |

|     | ASTM C618-1                             | 9 - Chemica                  | and Physical | Analyses - Fly | Ash/Pozzolans           |                |                                  |
|-----|-----------------------------------------|------------------------------|--------------|----------------|-------------------------|----------------|----------------------------------|
| C   | TL Ticket: 21102                        | Plant of Origin:             |              | NP             | Sample Date Range:      | 06/08/2021     |                                  |
| CT  | TL Project: CT16959                     | Sample ID:                   |              | te Comp #1     | to                      |                | NPA NATURA<br>POZZOLA<br>ASSOCIA |
| R   | eport Date: 07/29/2021                  | Supplier:                    |              |                | Date Received           | 06/10/2021     |                                  |
|     |                                         |                              |              |                |                         |                |                                  |
|     | Wyoming Analytical Laboratories         |                              |              |                | ASTM C618-19            |                |                                  |
| (by | , , ,                                   | s, Inc.)<br>Silicon Dioxide: | 73.4         | Class          | N Class F               | Class C        |                                  |
|     |                                         | uminum Oxide:                | 12.4         |                |                         |                |                                  |
|     |                                         | Iron Oxide:                  |              |                |                         |                |                                  |
|     | Total Silica, Aluminum, Iron            | :                            | 87.1         | ≥70.0%         | ≥50.0%                  | ≥50.0%         |                                  |
|     | Sulfur Trioxide                         | -                            | 0.0          | ≤4.0%          | ≤5.0%                   | ≤5.0%          |                                  |
|     | Calcium Oxide                           | :                            | 0.9          | N/A            | ≤18.0%                  | >18.0%         |                                  |
|     |                                         |                              |              |                |                         |                |                                  |
|     | Product Class                           | Class N                      |              |                |                         |                |                                  |
|     | Froduct class.                          | Class N                      |              | Conforms to    | Class: Yes              |                |                                  |
| Vo  | latile Composition (N                   | lass%)                       |              |                |                         |                | -                                |
|     | Moisture Conter                         |                              | 0.9          | ≤3.0%          | ≤3.0%                   |                |                                  |
|     | Loss on Ignitio                         | n:                           | 3.8          | ≤10.0%         |                         | ≤3.0%<br>≤6.0% |                                  |
|     |                                         |                              |              | 210.070        | 20.076                  | ≥6.0%          | -                                |
| Phy | ysical Test Results                     |                              |              |                |                         |                |                                  |
|     | Fineness, Retained on #3                | 25 Sieve (%):                | 3.2          | ≤34%           | ‰ ≤34%                  | ≤34%           |                                  |
|     | Strength Activity Index (%) *           |                              |              | * No 7         | -day limit if 28-day me | ets            |                                  |
|     | Percent of Cont                         | rol @ 7 Days:                | 85           | ≥75%           | ‰ ≥75%                  | ≥75%           |                                  |
|     | Percent of Control                      | ol @ 28 Days:                | 100          | Meets ≥75%     | é ≥75%                  | ≥75%           |                                  |
|     | Water Requirement,                      | % of Contro                  | 103          | M321 HR ≤1159  | <b>6</b> ≤105%          | ≤105%          |                                  |
|     | Soundness, Autoclave Ex                 | pansion (%):                 | -0.01        | Pozz ≤0.8%     | é ≤0.8%                 | ≤0.8%          |                                  |
|     | Der                                     | nsity (g/cm3) :              | 2.33         | N/A            | N/A                     | N/A            |                                  |
| Uni | iformity Established f                  | rom 10 previo                | us tests     |                |                         |                | =                                |
| Ave | erage Fineness:                         | 3.4 Difference               | 0.3(%)       | ±5(%)          | ) ±5(%)                 | ±5(%)          |                                  |
| A   | verage Density: 2.                      | 35 Difference                | -0.85%       | ±5%            | ±5%                     | ±5%            |                                  |
| Su  | pplementary Require                     | ments                        |              |                |                         |                |                                  |
|     | Available Alkalis, as Na <sub>2</sub> O |                              | 29%          |                |                         |                |                                  |

| CTL Ticket: 19081<br>CTL Project: 16638<br>Report Date: 08/23/2019 | Sample ID:                              | Metakaolin |      | Sample Date Range:<br>to:<br>Date Received: 06/03/2019 |
|--------------------------------------------------------------------|-----------------------------------------|------------|------|--------------------------------------------------------|
| Chemical                                                           | Composition (%)                         |            |      | ASTM C618-15                                           |
| (by Wyoming Ar                                                     | nalytical Laboratories, Inc.)           |            |      | <u>Class N</u>                                         |
| Tota                                                               | l Silica, Aluminum, Iron:               | 96.0       |      | 70.0 Min                                               |
|                                                                    | Silicon Dioxide:                        |            | 53.4 |                                                        |
|                                                                    | Aluminum Oxide:                         |            | 42.0 |                                                        |
|                                                                    | Iron Oxide:                             |            | 0.6  |                                                        |
|                                                                    | Sulfur Trioxide:                        | 0.1        |      | 4.0 Max                                                |
|                                                                    | Calcium Oxide:                          | 0.1        |      |                                                        |
|                                                                    | Moisture Content:                       | 0.2        |      | 3.0 Max                                                |
|                                                                    | Loss on Ignition:                       | 0.5        |      | 10.0 Max                                               |
|                                                                    |                                         |            |      | AASHTO M295-11 Specifications                          |
| Avail                                                              | able Alkalies (as Na <sub>2</sub> O):   | 0.0        |      | 1.5 Max                                                |
|                                                                    | Sodium Oxide:                           |            | 0.03 |                                                        |
|                                                                    | Potassium Oxide:                        |            | 0.00 |                                                        |
| Bhyo                                                               | ical Test Results                       |            |      | ASTM C618-15                                           |
| <u>Filys</u>                                                       | ical lest Results                       |            |      | <u>Class N</u>                                         |
| Fineness, Reta                                                     | ained on #325 Sieve (%):                | 2.5        |      | 34 Max                                                 |
| Class-N Str                                                        | ength Activity Index (%)                |            |      |                                                        |
|                                                                    | tio to Control @ 7 Days:                | 109.8      |      |                                                        |
| Pozzolan Rati                                                      | o to Control @ 28 Days:                 | 122.0      |      | 75 Min                                                 |
| Water Red                                                          | uirement, % of Control:                 | 111.6      |      | 115 Max                                                |
| Soundness, Au                                                      | utoclave Expansion (%):                 | -0.07      |      | 0.8 Max                                                |
| Drying Shrinkage, I                                                | ncrease @ 28 Days (%):                  |            |      | 0.03 Max 00 REP                                        |
|                                                                    | Density Mg/m <sup>3</sup> :             | 2.52       |      | See R. Wash                                            |
| Comments: Meets ASTM                                               | C618-17 Class N and AA<br>CTL   Thompso |            | -    | 5 14540                                                |

# ■ Does higher water demand for NP mean more permeability, less density, or diminished durability? NO!

|  | Compressive Strength                                                      | NP Class N @ 0.45<br>w/cm_    | @ 0.45 w/cm   |                   | I Class                                | NP Class N @ 0.55<br>w/cm_ | l<br>Class F (2) 0.55<br>w/cm_ |                                                                                                                                                                               | NATURAL<br>P3225LAN<br>A530CIATION |
|--|---------------------------------------------------------------------------|-------------------------------|---------------|-------------------|----------------------------------------|----------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
|  | 1 Day 10/12/22                                                            | 2760                          | 2290          | 2210              | 1520                                   | 1770                       | 1230                           |                                                                                                                                                                               |                                    |
|  | 7 Day 10/18/22                                                            | 6000                          | 5900          | 5320              | 4880                                   | 4600                       | 4070                           |                                                                                                                                                                               |                                    |
|  | 28 Day 11/8/22                                                            | 7460                          | 7200          | 6640              | 5750                                   | 5760                       | 4950                           |                                                                                                                                                                               |                                    |
|  | 28 day psi per pound of CM                                                | 13.23                         | 12.77         | 11.77             | 10.20                                  | 10.21                      | 8.78                           |                                                                                                                                                                               |                                    |
|  | 56 Day 12/6/22                                                            | 8530                          | 7980          | 7440              | 6240                                   | 6280                       | 5400                           |                                                                                                                                                                               |                                    |
|  |                                                                           | NP Class N @ 0.45             | •             | NP Class N @ 0.50 | <u>l Class</u><br>F.@ 0.50 w/cm in KΩ- |                            | Class F @ 0.55                 | AAHSTHO T-368 Classification 28 day<br>reading is the standard maturity in Ohms<br>Resistance for CDOT specifications, CDOT<br>performance requirment > 12 Ohms<br>Resistance |                                    |
|  |                                                                           | <u>w/cm in KΩ-cm</u>          | _             | w/cm in KΩ-cm     |                                        | w/cm In KΩ-cm              | w/cm In KΩ-cm                  |                                                                                                                                                                               |                                    |
|  | 3 Day 10/14/22                                                            | 5.4                           | 6.0           | 4.4               | 4.5                                    | 3.8                        | 4.5                            | Chloride Ion Penetrability Scale                                                                                                                                              |                                    |
|  | 7 Day 10/18/22                                                            | 7.3                           | 7.4           | 5.9               | 5.7                                    | 5.5                        | 5.6                            | <12 High                                                                                                                                                                      |                                    |
|  | 14 Day 10/25/22                                                           | 11.5                          | 8.6           | 9.5               | 6.4                                    | 8.6                        | 6.4                            | 12-21 Moderate                                                                                                                                                                |                                    |
|  | 21 Day 11/1/22                                                            | 15.6                          | 10.2          | 13.2              | 7.7                                    | 12.1                       | 7.5                            | 21-37 Low                                                                                                                                                                     |                                    |
|  | 28 Day 11/8/22                                                            | 20.1 Moderate                 | 12.8 Moderate | 16.9 Moderate     | 9.5 High                               | 16.2 Moderate              | 8.71 High                      | 37-254 Very Low                                                                                                                                                               |                                    |
|  | 56 Day 12/6/22                                                            | 41.6 Very Low                 | 25.1 Low      | 35.4 Low          | 17.2 Moderate                          | 34.2 Low                   | 16.1 Moderate                  | >254 Negligible                                                                                                                                                               |                                    |
|  | 90 Day 1/9/23                                                             | 60.2 Very Low                 | 36.0 Low      | 51.2 Very Low     | 24.3 Low                               | 48.4 Very Low              | 24.0 Low                       |                                                                                                                                                                               |                                    |
|  | AASHTO T-277, ASTM<br>C1202 RCP Test<br>56 Day 12/6/22 CDOT requires <250 | 927 Very Low<br>10 at 56 days | 1019 Low      | 1327 Low          | 2435 Moderate                          | 1545 Low                   | 3547 Moderate                  |                                                                                                                                                                               |                                    |

| Rapid Chloride Ion Permeability<br>ASTM C 1202 |               |           |                                       |  |  |  |  |  |  |
|------------------------------------------------|---------------|-----------|---------------------------------------|--|--|--|--|--|--|
| Mix ID                                         | Age<br>(days) | Test Date | Chloride Ion Penetrability (Coulombs) |  |  |  |  |  |  |
| NP at 0.50<br>w/c #1                           | 56            | 12/6/22   | 1206                                  |  |  |  |  |  |  |
| NP at 0.50<br>w/c #2                           | 56            | 12/6/22   | 1448                                  |  |  |  |  |  |  |
|                                                | Average       |           | 1327                                  |  |  |  |  |  |  |

Classification Table

| Charge Passed<br>(Coulombs) | Chloride Ion Penetrability |
|-----------------------------|----------------------------|
| >4000                       | High                       |
| 2000-4000                   | Moderate                   |
| 1000-2000                   | Low                        |
| 100-1000                    | Very Low                   |
| <100                        | Negligible                 |

Based on these results, the NP at 0.50 w/c mix has a "Low" chloride ion penetrability. If you have any questions regarding this report, please feel free to contact us.

| Rapid Chloride Ion Permeability<br>ASTM C 1202 |               |           |                                       |  |  |  |  |  |  |
|------------------------------------------------|---------------|-----------|---------------------------------------|--|--|--|--|--|--|
| Mix ID                                         | Age<br>(days) | Test Date | Chloride Ion Penetrability (Coulombs) |  |  |  |  |  |  |
| CF at 0.50 w/c<br>#1                           | 56            | 12/6/22   | 2668                                  |  |  |  |  |  |  |
| CF at 0.50 w/c<br>#2                           | 56            | 12/6/22   | 2201                                  |  |  |  |  |  |  |
|                                                | Average       |           | 2435                                  |  |  |  |  |  |  |

Classification Table

| Charge Passed<br>(Coulombs) | Chloride Ion Penetrability |  |  |  |  |  |
|-----------------------------|----------------------------|--|--|--|--|--|
| >4000                       | High                       |  |  |  |  |  |
| 2000-4000                   | Moderate                   |  |  |  |  |  |
| 1000-2000                   | Low                        |  |  |  |  |  |
| 100-1000                    | Very Low                   |  |  |  |  |  |
| <100                        | Negligible                 |  |  |  |  |  |

Based on these results, the CF at 0.50 w/c mix has a "Moderate" chloride ion penetrability. If you have any questions regarding this report, please feel free to contact us.

| Mitigates | s ASR to                      | o 0 expo                                                                                                                               | ansion       | in the St   | d 14d                       | l test, and  | .01% at 28          | d (For FAA job i                                               | n KS) |  |  |
|-----------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|-----------------------------|--------------|---------------------|----------------------------------------------------------------|-------|--|--|
|           |                               |                                                                                                                                        |              |             | SUM                         | MARY TABL    | .E                  |                                                                |       |  |  |
|           | Figure Aggregates Coarse Fine |                                                                                                                                        |              | Cement      | Cementitious<br>Materials E |              | 28-Day<br>Expansion | ASTM C 1567<br>Classification<br>(14-Days)                     |       |  |  |
|           | Control<br>Sand<br>A-1        | 0%<br>0%                                                                                                                               | 100%<br>100% | 100%<br>75% | 0%<br>25%                   | 0.29%        | 0.42%               | Potentially<br>Deleterious<br>Acceptable                       |       |  |  |
|           | T                             | The ASTM C 1567 test method defines the potential of an aggregate for deleterious expansion as follows, based on the 14-Day expansion: |              |             |                             |              |                     |                                                                |       |  |  |
|           | Test                          | Expansion<br>Days)                                                                                                                     | n (14-       | CI          | assifica                    | ation        | Potential for       | Deleterious ASR                                                |       |  |  |
|           |                               | < 0.1%                                                                                                                                 |              | _           | ccepta                      |              |                     | Low                                                            |       |  |  |
|           |                               | > 0.1%                                                                                                                                 |              | Potent      | ially De                    | eleterious   |                     | High                                                           |       |  |  |
|           | 11                            | VP mitigat                                                                                                                             | tes the re   | eactive roo | k to a                      | "Low" potent | ial for deleteri    | e, the use of 25%<br>ious ASR. The 28-<br>ents, if applicable. |       |  |  |
|           |                               |                                                                                                                                        |              |             |                             |              |                     |                                                                |       |  |  |













### **Cement & SCM changes and Performance Specifications** The game is changing quickly

Dave Figurski, PE Holcim

Colorado Concrete Conference September 28<sup>th</sup>, 2022





### **Global Cement Industry's Reaction to Pressure**

Metric

Env Glo

- Quickly cover what the GCCA has committed to: • 25% CO<sub>2</sub> reduction by 2030 (from 2020)
  - Net Zero emissions by 2050
- New Terminology:
  - **EPD's**...Environmental Product Declarations • Environmental "Nutrition Label"
  - **GWP**...Global Warming Potential (CO<sub>2</sub> equiv.)
- Low hanging fruit:
  - · Reduce clinker contents within cements
  - Minimize cement content within concrete
  - "Buy Clean Colorado Act" already here
- Future focus:
  - Renewable Energy additions to cement plants
  - Alternative Fuels
  - More efficient plants
  - Large scale carbon capture



Searc

| Environmental impact                      |                     |                      |
|-------------------------------------------|---------------------|----------------------|
| Global warming potential (100 years)      | 1040                | kg CO2-eq.           |
| Acidification potential                   | 2.45                | kg SO2-eq.           |
| Eutrophication potential                  | 1.22                | kg N-eq.             |
| Formation potential of tropospheric ozone | 48.8                | kg O3-eq             |
| Ozone depletion potential                 | 2.61E-05            | kg CFC 11-eq.        |
| - · · ·                                   | PCA Portland Cement | Industry Average EPD |



### **Durability testing**

- For year's there's been no easy/quick test method for assessing a mix's durability performance
- Specs have relied on limiting the w/cm as a surrogate
- <u>ASTM C1202</u> Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration
  - Measures amount of electrical current passing thru 2" core
  - Significant prep, time and handling of caustic solutions
  - Has been specified for years...lower coulomb values better
- <u>AASTHO T358</u> Surface Resistivity Indication of Concrete's Ability to Resist Chloride Ion Penetration (2015)
  - Newer and easier test to perform
  - Excellent correlation to C1202
  - · Required for most CDOT approved mixes in 2021
  - · Higher resistivity values better









# <section-header> Basis for moving to performance specifications Concrete mix design development is a balancing act! a) Strength b) Workability (and how long you have it) c) Durability a) Dimensional stability b) Brepeatability g) Economics b) Sustainability c) Sustainability c) Frescriptive specifications limit the innovative potential of the concrete supplier



## ACI 318-19 ACI Building Code Requirements

- Specified mix criteria to ensure adequate durability, protecting against:
  - F Freezing & Thawing
  - S Sulfate
  - · P/W In contact w/water
  - · C Corrosion Protection of Reinforcement

What testing were these specifications based upon? Can we redo the foundational testing using Natural Pozzolans in order to establish new guidelines for a very different, yet very effective SCM?

|                         | Table | 19.3.2.1-   | -Requireme                       | nts for cond                     | crete by exposure                                | e class                                                                                      |                                                   | (ACI 318-19)          |
|-------------------------|-------|-------------|----------------------------------|----------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------|
|                         | Free  | osure class | Maximum<br>w/cm <sup>[1,2]</sup> | Minimum<br>f <sub>c</sub> ', psi |                                                  | Limits on<br>cementitious<br>materials                                                       |                                                   |                       |
| -:                      | Expo  | FO          | N/A                              | 2500                             |                                                  | Air content<br>N/A                                                                           |                                                   | N/A                   |
| Reinforcement           |       | F1          | 0.55                             | 3500                             | Table 19 3 3 1                                   | for concrete or Table 19.3.                                                                  | 3.3 for shotcrete                                 | N/A                   |
|                         |       | F2          | 0.45                             | 4500                             |                                                  | for concrete or Table 19.3.                                                                  |                                                   | N/A                   |
|                         |       | F3          | 0.40(2)                          | 5000 <sup>(3)</sup>              | Table 19.3.3.1                                   | for concrete or Table 19.3.                                                                  | 3.3 for shotcrete                                 | 26.4.2.2(b)           |
| haaa                    |       |             |                                  |                                  | Cem                                              | entitious materials <sup>[4]</sup> —                                                         | Types                                             | Calcium chloride      |
| these                   |       |             |                                  |                                  | ASTM C150                                        | ASTM C595                                                                                    | ASTM C1157                                        | admixture             |
|                         |       | S0          | N/A                              | 2500                             | No type restriction                              | No type restriction                                                                          | No type restriction                               | No restriction        |
| ? Can we                |       | S1          | 0.50                             | 4000                             | Π[2][4]                                          | Types with (MS)<br>designation                                                               | MS                                                | No restriction        |
| ting using              |       | S2          | 0.45                             | 4500                             | <b>A</b> [9]                                     | Types with (HS)<br>designation                                                               | HS                                                | Not permitted         |
| der to                  | \$3   | Option 1    | 0.45                             | 4500                             | V plus pozzolan or<br>slag cement <sup>(7)</sup> | Types with (HS)<br>designation plus<br>pozzolan or slag<br>cement <sup>(7)</sup>             | HS plus pozzolan or<br>slag cement <sup>(7)</sup> | Not permitted         |
| for a very              |       | Option 2    | 0.40                             | 5000                             | V <sup>[0]</sup>                                 | Types with (HS)<br>designation                                                               | HS                                                | Not permitted         |
|                         |       |             |                                  |                                  |                                                  |                                                                                              |                                                   |                       |
| ve SCM?                 |       | W0          | N/A                              | 2500                             |                                                  |                                                                                              | one                                               |                       |
|                         |       | W1          | N/A                              | 2500                             |                                                  | 1010-001                                                                                     | 2.2(d)                                            |                       |
|                         |       | W2          | 0.50                             | 4000                             | ANI NO.                                          |                                                                                              | 2.2(d)                                            |                       |
|                         |       |             |                                  |                                  | content in concrete                              | uble chloride ion (Cl <sup>-</sup> )<br>e, percent by mass of<br>materials <sup>[9,30]</sup> |                                                   |                       |
|                         |       |             |                                  |                                  | Nonprestressed<br>concrete                       | Prestressed concrete                                                                         | Additional provisions                             |                       |
|                         |       | C0          | N/A                              | 2500                             | 1.00                                             | 0.06                                                                                         | No                                                | me                    |
|                         |       | C1          | N/A                              | 2500                             | 0.30                                             | 0.06                                                                                         |                                                   |                       |
| (Use authorized by ACI) |       | C2          | 0.40                             | 5000                             | 0.15                                             | 0.06                                                                                         | Concrete                                          | cover <sup>[11]</sup> |



- NRMCA P2P
  - Specifications in Practice documents
  - Selected Published Papers/Reports



### Summary....

- New cements, new SCM's, & new tests are here
- NPs don't behave like the materials our prescriptive specs are built around
- If the industry is going to make progress on the sustainability goals in front of us, producers will need to be able to innovate.

Start becoming familiar and permit performance specifications where you can!



Questions...feel free to email: Dave Figurski david.figurski@holcim.com



NP industry's request to the DOT's and other specifiers in the industry:

1. Give us optional performance standards that align with the prescribed w/c ratios.

2. Provide optional 56d specifications for strength and durability (resistivity or RCP) specifications – in order to reduce cementitious.

3. NPs are different materials which require different mix designs for proper optimization.

4. Remove LOI restrictions on NP. LOI in NP is not carbon but rather bound water which does not affect air entrainment.

5. We aren't looking for a pass, but rather a pathway. Allow for approval of NP mix designs based on performance rather than W/C ratio.

We can reduce clinker in cement now. We can reduce cement in concrete now. We can reduce concrete in construction now (optimized mix designs). We can make extremely durable, sustainable concrete now by learning lessons from the past. Why wait?



















### NPA NATURAL POZZOLAN ASSOCIAN

Modern portland cements produce unreacted excess free lime. Standard TI/II cements can release up to 25% calcium hydroxide (a by-product of the hydraulic reaction) into the pore solution - unbound, & free to go about its deleterious work - **Ca(OH)2** is:

- Y.A key ingredient in ASR
- 2. A key ingredient in Sulfate Attack
- 3. A key ingredient in Efflorescence
- 4. A key ingredient in Chlorides induced expansion
- 5. A key contributor to porosity in concrete (allowing ingress of chlorides, sulfates, etc)



By converting the free-lime into additional C-S-H, a concrete using NP at a 20~25% replacement of cement will have greater ultimate compressive strength than a 100% cement mix design - up to 150% SAI of the straight cement index mix at 1 year.





## **Reduction of Carbon Footprint is significant:**

Typical GWP of cement: .922 mt/1 ton of Cement produced\* GWP for raw NP: < .05~.08 mt/1 ton of Raw NP produced\*\*

There is a massive reduction in carbon footprint when cement is replaced with NP. Currently some customers are replacing up to 40% of their cement with NP and still hitting their strength requirements, reducing embodied carbon, permeability, and heat of hydration while mitigating ASR and Sulfate attack. It is a win-win-win proposition.

\* PCA EPD OPC 2021 \*\* Each process is slightly different 













### Lab mix plan to evaluate Natural Pozzolans and water demand

- (4) mixes per material combination w/varying w/cm ratios
  - 611 lbs of total cementitious per yard
  - Fixed 25% SCM replacement
  - Target a 4 5" slump with 5 6% total air content

|      | IL cement       | IL cement         | C595 Blended Nat.                                                                                                        | I/II cement                      |                                                                                                             |  |  |  |
|------|-----------------|-------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------|--|--|--|
|      | 25% Class F ash | 25% Nat. Pozzolan | Pozzolan cement                                                                                                          | 25% Class F ash                  |                                                                                                             |  |  |  |
| 0.37 | High Range WR   |                   |                                                                                                                          | High Range WR                    |                                                                                                             |  |  |  |
| 0.40 | Mid Range WR    |                   |                                                                                                                          | Mid Range WR                     |                                                                                                             |  |  |  |
| 0.43 | Low Range WR    | High Range WR     | High Range WR                                                                                                            | Low Range WR                     |                                                                                                             |  |  |  |
| 0.46 | No WR           | Mid Range WR      | Mid Range WR                                                                                                             | No WR                            |                                                                                                             |  |  |  |
| 0.49 |                 | Low Range WR      | Low Range WR                                                                                                             |                                  |                                                                                                             |  |  |  |
| 0.52 |                 | No WR             | No WR                                                                                                                    |                                  |                                                                                                             |  |  |  |
|      |                 |                   | <ul> <li>Understand t</li> <li>Can the w</li> </ul>                                                                      | he limitations of ater demand of | h (& smaller extent C150 vs. C595 IL)<br>adding extra water to NP mixes<br>NP's be met w/o adverse effects? |  |  |  |
|      | i.              |                   | <ul> <li>NP's being used successfully today:</li> <li>Can they be used more sustainably/cost effectively/etc.</li> </ul> |                                  |                                                                                                             |  |  |  |

