



# DOT Utilization of Roller Compacted Concrete



Dan Vipperman P.E., Quality Control & Engineering Manager  
A.G. Peltz Group LLC | Birmingham, AL

# DOT Utilization of RCC

- What ?
- Where ?
- Why?



# What is RCC? Definition

- “Roller-Compacted Concrete (RCC) is a no-slump concrete that is compacted by high density pavers and vibratory rollers.”
  - Negative Slump
  - No reinforcing steel
  - No finishing
  - Consolidated with vibratory rollers
- Concrete pavement placed in a different way!

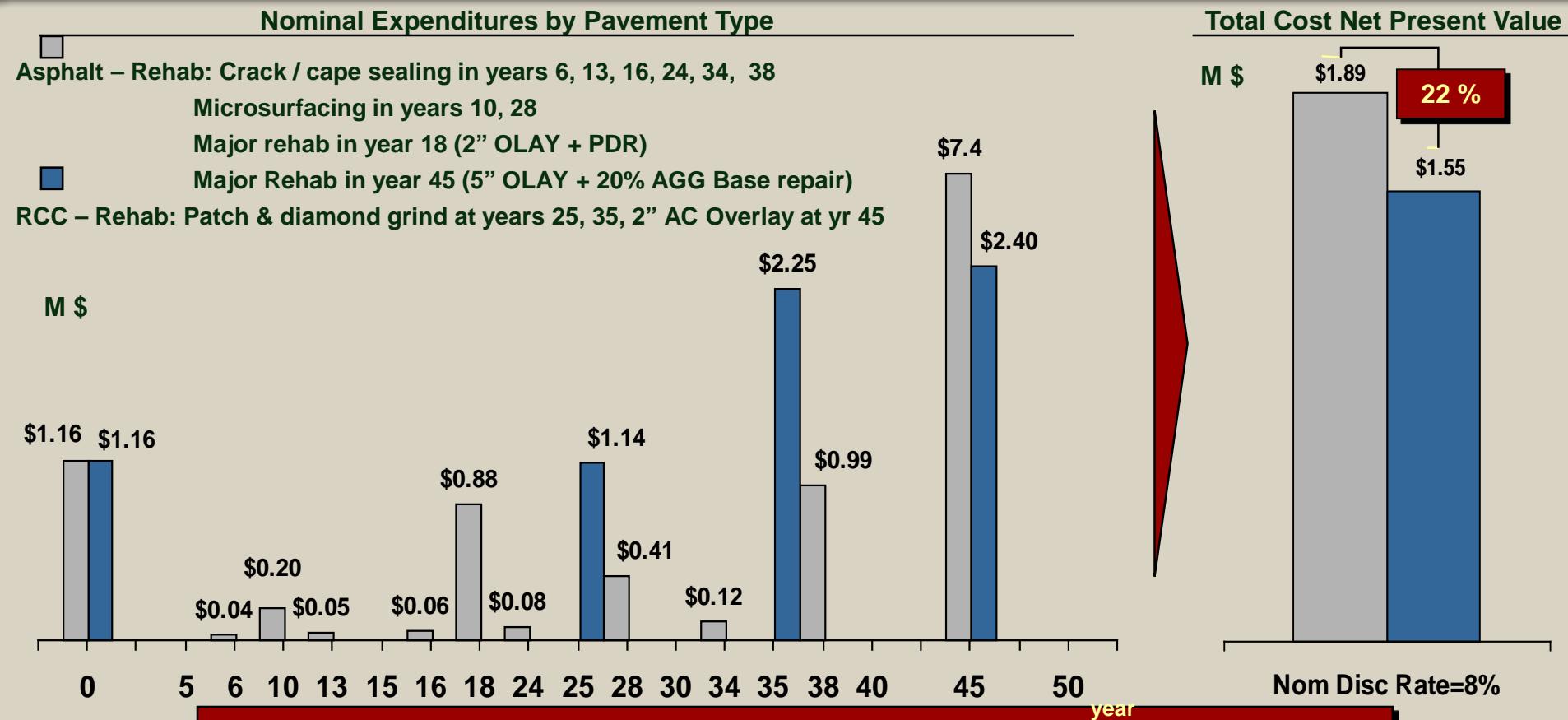


# Where? Project Feasibility



- Project Size
- Site Geometry
- Loading Characteristics
- Project End User

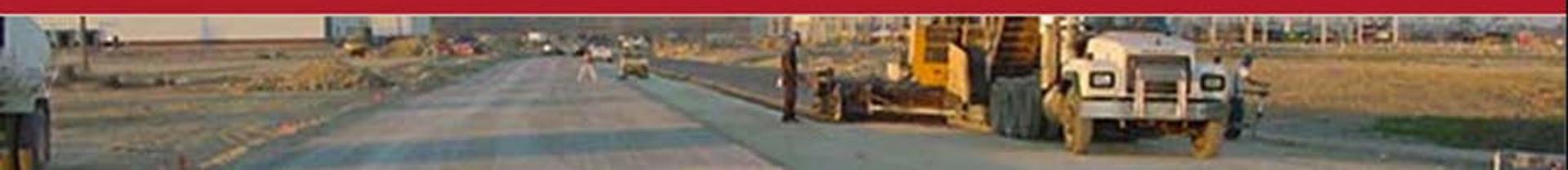



# Why RCC Paving?



- Speed of construction
- Early strength gain
- Durability
- Cost




# Why RCC? Offers Lower Life Cycle Cost



Asphalt is 22% more expensive than RCC throughout the life cycle of the road

# DOT Utilization of RCC

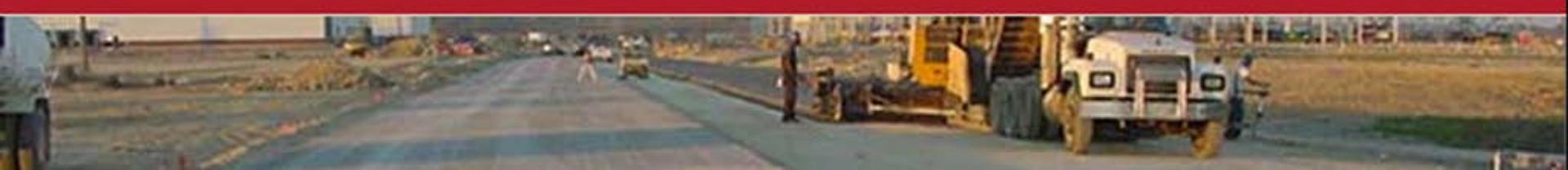
## Materials & Mix Design



# Typical Mixture Design

- 400 – 550 lbs/CY Cementitious Material.
- 3400 – 3700 lbs/CY Well Graded Aggregate.
- 20 – 30 gallons/CY Water.
- W/C Ratio usually between 0.3 – 0.45.
- Water amount dictated by Moisture/ Density Relationship.




# Surface Texture

Highly dependent on aggregate gradation and binder content.



# DOT Utilization of RCC

## Construction

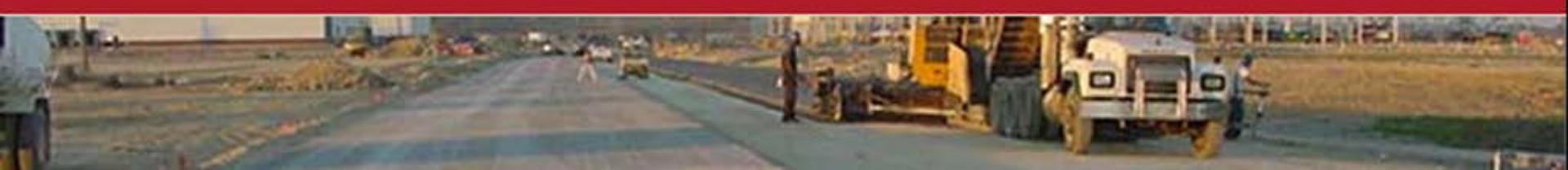
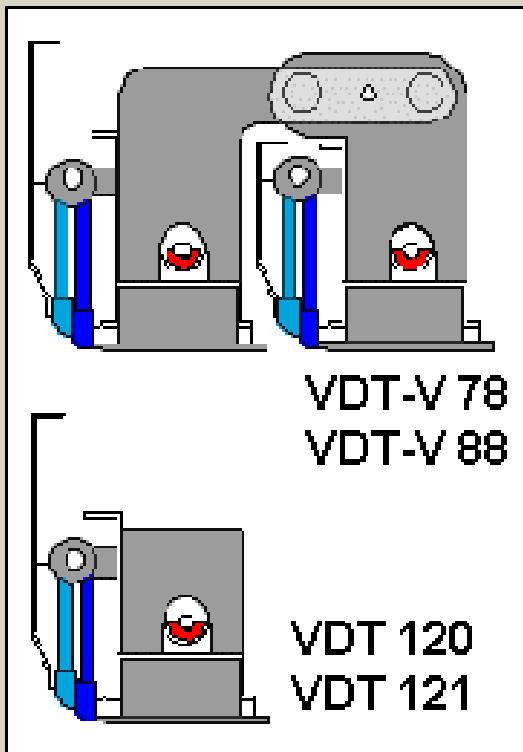


# Continuous Mix Pug Mill

- High-volume applications
- Excellent mixing efficiency for dry materials
- 250 to 900+ tons/hr
- Mobile, erected on site
- Mobilization costs



# Transporting & Placement


# Placing Equipment

- High density pavers
  - Vibrating screed
  - Dual tamping bars and or pressure bars
  - High initial density, 90-95%
  - Reduces subsequent compaction
  - High-volume placement (1,000 to 2,000 cubic yards per shift)
  - Designed for harsh mixes
  - Smoothest RCC surface



# High Density Screed

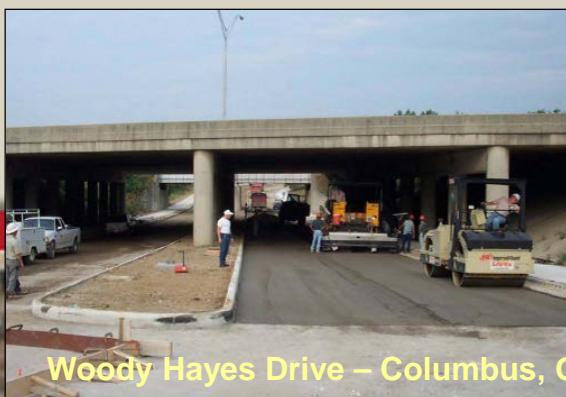
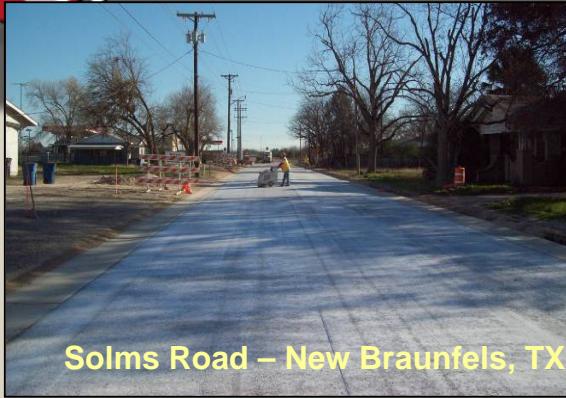


# Compacted Edges through the use of Edging Shoes



# Compaction-Final Density

- Final density is critical for strength and durability
- Compacted to 98% Modified Proctor
- Dual Steel Drum Roller
- Combination Roller
- Rubber coated steel drum roller

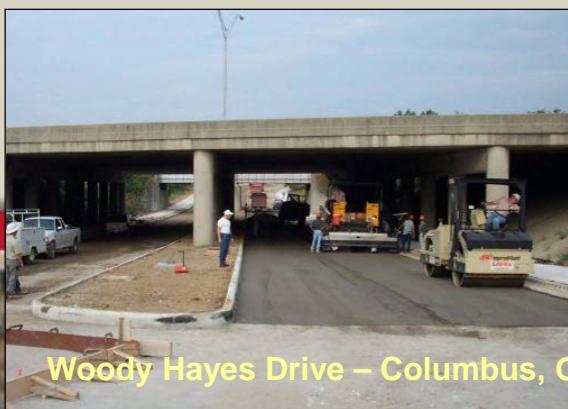
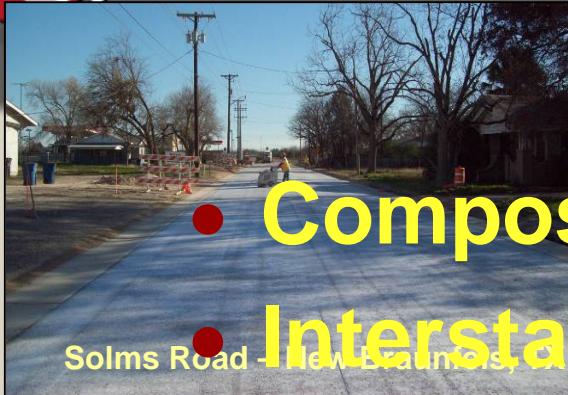




# Concrete Curing Compound

- White-pigmented concrete curing compounds
- Apply 1 to 1.5 times the normal application rate



# DOT Utilization of RCC


# RCC Pavement

## Why are DOT's interested?

- Improve Structural Capacity of Existing Roadways
- Urban/fast-track construction
  - Lift thickness limitations
  - Drop-off limitations
  - Maintenance of cross-traffic
  - Construction speed
- Use RCC as base under asphalt
  - Success with Cement Stabilized Aggregate Bases
- Stimulation of competition
  - Lowers cost to the taxpayer
- Expand the portfolio of pavement types available
  - Price run-up of asphalt binder
  - Uncertain petroleum supply in future
- Concrete pavement at a initial price competitive with HMA





# DOT utilization of RCC – Project Types Used to Date

- Composite Pavements
- Interstate Shoulders
- Turn Lanes
- Lower Volume Roadways



# Typical RCC Composite Pavement Cross-Section

**1" – 3" Asphalt**

**6" – 10" RCC Base**

**Existing Subgrade / Base**



# Composite Pavement History

- Select cities started using RCC as a base layer over 25 years ago
  - Portland (1985)
  - Fort St. John (British Columbia)
  - City of Edmonton (92-93)
- Columbus, Ohio adopted an aggressive city streets program in 2001
  - Over 50 projects to date
- Various methods of treating cracks from saw and sealing to allowing to crack naturally



# RCC - City Streets Examples



- Powell Pond Rd, Aiken County (Demo. Project)
- SC 5, York County
- US 78, Charleston County
- New State Road, Lexington County
- Greystone Boulevard, Richland County
- S. Beltline Boulevard, Richland County
- Richland Street (US78), Aiken County
- SC 9, Horry County
- S-11-171, Cherokee County



**2" Asphalt**

**10" RCC Base**

**Existing Subgrade / Base**



- State route with heavy truck traffic
- Poor & wet subgrade/soils resulted in consistent rutting



Must be able to get compaction/density,  
subgrade improvement may be necessary



# US 78 Ladson Co. Completed Project



# DOT utilization of RCC – Project Types Used to Date

- Composite Pavements
- Interstate Shoulders
- Turn Lanes
- Lower Volume Roadways



# I-285 Shoulder Replacement Atlanta, GA

## Pavement Design Information

- Owner: Georgia DOT
- Use Type: State Route shoulder
- Year Built: 2006
- Thickness: 6 & 8" RCC
- Quantity: 35 lane miles 38.500 CY



## Additional Details

- 2006 SCAN Innovation Award
- Material placed on weekends only
- Removal of shoulders on Friday night starting 9:00 PM
- Had to be off the road by 5:00 AM Monday morning (\$5,000 per hour fine)
- Typically 1.5-2 miles per night



# I-285 Shoulder Replacement Atlanta, GA





# I-285 Shoulder Replacement: Completed Shoulder



# DOT utilization of RCC – Project Types Used to Date

- Composite Pavements
- Interstate Shoulders
- Turn Lanes
- Lower Volume Roadways



## Pavement Design Information

- Owner: Georgia DOT
- Use Type: State Route shoulder and Median
- Year Built: 2006
- Thickness: 7" RCC (Shoulder & Median)
- Quantity: 16,500 CY

# STATE ROUTE 6

## Powder Springs, GA



## Additional Details

- First use of RCC in travel way in United States
- Project won 2007 SCAN Quality Award for concrete pavement construction
- ADT - 17,000, 5% trucks – 22 M ESALS
- RCC used for travel lane during construction



# State Route 6 Powder Springs, GA





A

# DOT utilization of RCC – Project Types Used to Date

- Composite Pavements
- Interstate Shoulders
- Turn Lanes
- Lower Volume Roadways



## Pavement Design Information

- Owner: South Carolina DOT
- Use Type: US Highway
- Year Built: 2009
- Thickness: Milled 10" asphalt  
Placed 10" RCC
- Traffic: 6000 ADT, 4 lanes
- Speed: 45 mph



## Additional Details

- Replaced 27,500 SY in 15 days
- Placed 10" RCC in 1 lift
- All milled areas were paved within same day
- Maintained 1 lane open in each direction
  - Transverse Joints : 20 ft, early entry saw cut within 3 hours
- Traffic re-opened within 24 hours
- 100% Diamond Ground



# RICHLAND AV. (US 78) AIKEN, SC



# RICHLAND AV. (US 78) AIKEN, SC



**RICHLAND AV. (US 78) AIKEN, SC**  
**Completed Surface Texture**

# ACTUAL RCC BIDS ARE VERY COMPETITIVE WHEN THE MARKET IS DEVELOPED

## Projects Bid to SC & GA DOT in 2006-2009

| LOCATION                   | RCC<br>Thickness<br>(in) | BID QUANTITY<br>(CY) | BID PRICE / SY     | BID PRICE / SY<br>/ IN |
|----------------------------|--------------------------|----------------------|--------------------|------------------------|
| US 78 Aiken Co.            | 10                       | 27,050               | \$ 29.93           | \$ 2.99                |
| Lexington/<br>Richland Co. | 10                       | 51,500               | \$ 33.60           | \$ 3.36                |
| Rock Hill                  | 10                       | 25,650               | \$ 33.00           | \$ 3.30                |
| I-385 Lauren Co.           | 10                       | 135,387              | \$ 22.00           | \$ 2.20                |
| I-385 Greenville<br>County | 8                        | 54,957               | \$ 21.85           | \$ 2.73                |
| SR 6 – Powder<br>Springs   | 7"                       | 16,500               | \$28.78            |                        |
| I-285 Atlanta              | 6"<br>8"                 | 20,000<br>18,500     | \$17.75<br>\$23.67 |                        |



# DOT Utilization of RCC

## What have we learned?

- Proper Joint construction is Critical
- RCC can be diamond ground to achieve a smooth ride.
  - Helps improve surface texture.
  - IRI numbers in the 60s are achievable.
- RCC can be milled if it is going to be covered.
  - Milling can cause joint damage.
- 10"+ RCC can cause problems when placed with typical equipment.
- Even with best practices, surface texture is varied and material dependent
- RCC can be placed in an urban environment without excessive traffic disruption.
- **You only get one shot at doing it right.**





# DOT Utilization of RCC What have we learned?

- Proper Joint construction is Critical
- RCC can be diamond ground to achieve a smooth ride.
  - Helps improve surface texture.
  - IRI numbers in the 60s are achievable.
- RCC can be milled if it is going to be covered.
  - Milling can cause joint damage.
- 10"+ RCC can cause problems when placed with typical equipment.
- Even with best practices, surface texture is varied and material dependent
- RCC can be placed in an urban environment without excessive traffic disruption.
- **You only get one shot at doing it right.**





# Questions and Contact Information

**Dan Vipperman P.E.  
AG Peltz Group, LLC**  
[dvipperman@agpeltz.com](mailto:dvipperman@agpeltz.com)  
[www.agpeltz.com](http://www.agpeltz.com)  
**904.501.6161**

