About CTRE
The mission of the Center for Transportation Research and Education (CTRE) at Iowa State University is to develop and implement innovative methods, materials, and technologies for improving transportation efficiency, safety, and reliability while improving the learning environment of students, faculty, and staff in transportation-related fields.

About RIMOS
Roadway Infrastructure Management and Operations Systems (RIMOS) is a program at CTRE dedicated to developing practical tools for viewing, understanding, and making decisions for asset quality and performance over time. The tools and systems RIMOS develops are helping transportation agencies make cost-effective decisions about their roadways and related assets.

Disclaimer Notice
The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. The opinions, findings and conclusions expressed in this publication are those of the authors and not necessarily those of the sponsors.

The sponsors assume no liability for the contents or use of the information contained in this document. This report does not constitute a standard, specification, or regulation.

The sponsors do not endorse products or manufacturers. Trademarks or manufacturers’ names appear in this report only because they are considered essential to the objective of the document.

ISU Non-Discrimination Statement
Iowa State University does not discriminate on the basis of race, color, age, ethnicity, religion, national origin, pregnancy, sexual orientation, gender identity, genetic information, sex, marital status, disability, or status as a U.S. veteran. Inquiries regarding non-discrimination policies may be directed to Office of Equal Opportunity, Title IX/ADA Coordinator, and Affirmative Action Officer, 3350 Beardshear Hall, Ames, Iowa 50011, 515-294-7612, email eooffice@iastate.edu.

Iowa DOT Statements
Federal and state laws prohibit employment and/or public accommodation discrimination on the basis of age, color, creed, disability, gender identity, national origin, pregnancy, race, religion, sex, sexual orientation or veteran’s status. If you believe you have been discriminated against, please contact the Iowa Civil Rights Commission at 800-457-4416 or the Iowa Department of Transportation affirmative action officer. If you need accommodations because of a disability to access the Iowa Department of Transportation’s services, contact the agency’s affirmative action officer at 800-262-0003.

The preparation of this report was financed in part through funds provided by the Iowa Department of Transportation through its “Second Revised Agreement for the Management of Research Conducted by Iowa State University for the Iowa Department of Transportation” and its amendments.

The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the Iowa Department of Transportation or the U.S. Department of Transportation.
Technical Report Documentation Page

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Government Accession No.</td>
<td></td>
</tr>
<tr>
<td>3. Recipient’s Catalog No.</td>
<td></td>
</tr>
<tr>
<td>4. Title and Subtitle</td>
<td>Pavement Management Performance Modeling: Evaluating the Existing PCI Equations</td>
</tr>
<tr>
<td>5. Report Date</td>
<td>December 2014</td>
</tr>
<tr>
<td>6. Performing Organization Code</td>
<td></td>
</tr>
<tr>
<td>7. Author(s)</td>
<td>Fatih Bektas, Omar Smadi, and Mazin Al-Zoubi</td>
</tr>
<tr>
<td>9. Performing Organization Name and Address</td>
<td>Institute for Transportation</td>
</tr>
<tr>
<td></td>
<td>Iowa State University</td>
</tr>
<tr>
<td></td>
<td>2711 South Loop Drive, Suite 4700</td>
</tr>
<tr>
<td></td>
<td>Ames, IA 50010-8664</td>
</tr>
<tr>
<td>10. Work Unit No. (TRAIS)</td>
<td></td>
</tr>
<tr>
<td>11. Contract or Grant No.</td>
<td></td>
</tr>
<tr>
<td>12. Sponsoring Organization Name and Address</td>
<td>Iowa Department of Transportation</td>
</tr>
<tr>
<td></td>
<td>800 Lincoln Way</td>
</tr>
<tr>
<td></td>
<td>Ames, IA 50010</td>
</tr>
<tr>
<td></td>
<td>Federal Highway Administration</td>
</tr>
<tr>
<td></td>
<td>U.S. Department of Transportation</td>
</tr>
<tr>
<td></td>
<td>1200 New Jersey Avenue SE</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20590</td>
</tr>
<tr>
<td>13. Type of Report and Period Covered</td>
<td>Final Report</td>
</tr>
<tr>
<td>15. Supplementary Notes</td>
<td>Visit www.intrans.iastate.edu for color pdfs of this and other research reports.</td>
</tr>
<tr>
<td>16. Abstract</td>
<td>The work described in this report documents the activities performed for the evaluation, development, and enhancement of the Iowa Department of Transportation (DOT) pavement condition information as part of their pavement management system operation. The study covers all of the Iowa DOT’s interstate and primary National Highway System (NHS) and non-NHS system.</td>
</tr>
<tr>
<td></td>
<td>A new pavement condition rating system that provides a consistent, unified approach in rating pavements in Iowa is being proposed. The proposed 100-scale system is based on five individual indices derived from specific distress data and pavement properties, and an overall pavement condition index, PCI-2, that combines individual indices using weighting factors.</td>
</tr>
<tr>
<td></td>
<td>The different indices cover cracking, ride, rutting, faulting, and friction. The Cracking Index is formed by combining cracking data (transverse, longitudinal, wheel-path, and alligator cracking indices). Ride, rutting, and faulting indices utilize the International Roughness Index (IRI), rut depth, and fault height, respectively.</td>
</tr>
<tr>
<td>17. Key Words</td>
<td>Iowa pavement condition—pavement condition index—pavement rating</td>
</tr>
<tr>
<td>18. Distribution Statement</td>
<td>No restrictions.</td>
</tr>
<tr>
<td>20. Security Classification (of this page)</td>
<td>Unclassified.</td>
</tr>
<tr>
<td>21. No. of Pages</td>
<td>77</td>
</tr>
<tr>
<td>22. Price</td>
<td>NA</td>
</tr>
</tbody>
</table>

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized
PAVEMENT MANAGEMENT PERFORMANCE MODELING: EVALUATING THE EXISTING PCI EQUATIONS

Final Report
December 2014

Principal Investigator
Omar Smadi, RIMOS Director
Center for Transportation Research and Education, Iowa State University

Co-Principal Investigator
Fatih Bektas, Research Faculty
Center for Transportation Research and Education, Iowa State University

Researchers
Mazin Al-Zoubi, Post-doctoral Associate
Center for Transportation Research and Education, Iowa State University

Inya Nlenanya, Research Specialist
Center for Transportation Research and Education, Iowa State University

Authors
Fatih Bektas, Omar Smadi, and Mazin Al-Zoubi

Sponsored by
the Iowa Department of Transportation and
the Federal Highway Administration
(SPR RB14-013)

Preparation of this report was financed in part
through funds provided by the Iowa Department of Transportation
through its Research Management Agreement with the
Institute for Transportation
(InTrans Project 13-455)

A report from
Institute for Transportation at Iowa State University
2711 South Loop Drive, Suite 4700, Ames, IA 50010-8664
Phone: 515-294-8103 Fax: 515-294-0467
www.intrans.iastate.edu
TABLE OF CONTENTS

ACKNOWLEDGMENTS ... ix
EXECUTIVE SUMMARY .. xi
1. INTRODUCTION .. 1
 1.1 Background .. 1
2. EVALUATION OF PAVEMENT CONDITION BY OTHER STATES IN THE US 2
 2.1. Indices Determined Based on Direct Panel Ratings .. 2
 2.2. Indices Computed Based on Utility Values ... 3
 2.3. Indices Computed Based on Deduct Values .. 4
 2.4. Pavement Condition Indices in the US ... 5
3. DEVELOPMENT OF PAVEMENT CONDITION INDICES FOR IOWA 24
 3.1. Data and Screening .. 24
 3.2. Individual Condition Indices .. 26
 3.3. Overall Pavement Condition Index .. 44
4. COMPARISON OF PCI AND PCI-2 ... 49
5. SUMMARY AND RECOMMENDATIONS ... 60
REFERENCES ... 63
REFERENCES FOR TABLE 3 ... 63
LIST OF FIGURES

Figure 1. General shape of utility curves used for computing TxDOT pavement performance indices ..4
Figure 2. Frequency of data points based on pavement type used for Cracking, Riding, Rutting, and Faulting Indices ..26
Figure 3. Frequency of data points based on pavement type used for Friction Index ..27
Figure 4. Cracking Index for PCC Type 1-Interstate ..29
Figure 5. Cracking Index for PCC Type 1-Primary ..30
Figure 6. Cracking Index for AC Type 4-Interstate ..30
Figure 7. Cracking Index for AC Type 4-Primary ..31
Figure 8. Cracking Index for composite with asphalt surface Type 331
Figure 9. Cracking Index for composite built on old jointed PCC pavement Type 3A32
Figure 10. Cracking Index for composite built on old CRC pavement Type 3B32
Figure 11. Riding Index for PCC Type 1-Interstate ..33
Figure 12. Riding Index for PCC Type 1-Primary ..33
Figure 13. Riding Index for composite with asphalt surface Type 334
Figure 14. Riding Index for composite built on old jointed PCC pavement Type 3A34
Figure 15. Riding Index for composite built on old CRC pavement Type 3B35
Figure 16. Riding Index for AC Type 4-Interstate ..35
Figure 17. Riding Index for AC Type 4-Primary ..35
Figure 18. Rutting Index for composite with asphalt surface Type 337
Figure 19. Rutting Index for composite built on old jointed PCC pavement Type 3A37
Figure 20. Rutting Index for composite built on old CRC pavement Type 3B38
Figure 21. Rutting Index for AC Type 4-Interstate ..38
Figure 22. Rutting Index for AC Type 4-Primary ..39
Figure 23. Faulting Index for PCC Type 1-Interstate ..40
Figure 24. Faulting Index for PCC Type 1-Primary ..40
Figure 25. Friction Index for sections three years old or newer ..41
Figure 26. Friction Index for PCC Type 1-Interstate ..41
Figure 27. Friction Index for PCC Type 1-Primary ..42
Figure 28. Friction Index for composite with asphalt surface Type 342
Figure 29. Friction Index for composite built on old jointed PCC pavement Type 3A43
Figure 30. Friction Index for composite built on old CRC pavement Type 3B43
Figure 31. Friction Index for AC Type 4-Interstate ..43
Figure 32. Friction Index for AC Type 4-Primary ..44
Figure 33. PCI-2 for Type 1-Interstate ..45
Figure 34. PCI-2 for Type 1-Primary ..45
Figure 35. PCI-2 for Type 3 ..46
Figure 36. PCI-2 for Type 3A ..46
Figure 37. PCI-2 for Type 3B ..47
Figure 38. PCI-2 for Type 4-Interstate ..47
Figure 39. PCI-2 for Type 4-Primary ..48
Figure 40. Comparison of PCI and PCI-2 for PCC Type 1-Interstate: (a) complete data set, (b) sections less than 10 years old, (c) sections 20 to 30 years old49
Figure 41. Comparison of PCI and PCI-2 for PCC Type 1-Primary50
Figure 42. Comparison of PCI and PCI-2 for Type 3 composite with asphalt surface51
Figure 43. Comparison of PCI and PCI-2 for Type 3A composite built on old jointed PCC52
Figure 44. Comparison of PCI and PCI-2 for Type 3B composite built on old CRC53
Figure 45. Comparison of PCI and PCI-2 for AC Type 4-Interstate: (a) complete data set, (b) sections less than 10 years old, (c) sections 10 to 25 years old..54
Figure 46. Comparison of PCI and PCI-2 for AC Type 4-Primary..55
Figure 47. Deterioration of pavement condition by pavement age for PCC Type 1-Interstate: (a) using PCI, (b) using PCI-2 ...56
Figure 48. Deterioration of pavement condition by pavement age for PCC Type 1-Primary: (a) using PCI, (b) using PCI-2 ...56
Figure 49. Deterioration of pavement condition by pavement age for Type 3 composite with asphalt surface: (a) using PCI, (b) using PCI-2 .. 57
Figure 50. Deterioration of pavement condition by pavement age for Type 3A composite built on old jointed PCC: (a) using PCI, (b) using PCI-2 ...57
Figure 51. Deterioration of pavement condition by pavement age for Type 3B composite built on old CRC: (a) using PCI, (b) using PCI-2 ...58
Figure 52. Deterioration of pavement condition by pavement age for AC Type 4-Interstate: (a) using PCI, (b) using PCI-2 ...58
Figure 53. Deterioration of pavement condition by pavement age for AC Type 4-Primary: (a) using PCI, (b) using PCI-2 ..59

LIST OF TABLES

Table 1. Iowa DOT PMIS data for each pavement section ..5
Table 2. PCI matrix used by the Iowa DOT ..6
Table 3. Pavement condition rating practices in the US ...7
Table 4. Threshold values for the cracking sub-indices ...28
Table 5. Cracking sub-index weights for calculating Cracking Index by pavement type29
Table 6. Median Riding Index values and rating percentages by type of pavement section36
Table 7. Median rutting values and Rutting Index values by type of pavement section39
Table 8. Median Friction Index values by type of pavement section ..44
Table 9. 2012 PCI-2 median values and weighted averages by type of pavement section48
ACKNOWLEDGMENTS

The research team would like to acknowledge the Iowa Department of Transportation (DOT) for sponsoring this research and the Federal Highway Administration for state planning and research (SPR) funds used for this project.
EXECUTIVE SUMMARY

The work described in this report documents the activities performed for the evaluation, development, and enhancement of the Iowa Department of Transportation (DOT) pavement condition information as part of their pavement management system operation. The study covers all of the Iowa DOT’s interstate and primary National Highway System (NHS) and non-NHS system. Personnel from the Iowa DOT Pavement Management Committee (from the offices of Design, Maintenance, Materials, Program Management, and Systems Planning) provided guidance and support throughout the project.

The current Iowa DOT pavement condition index (PCI) is calculated using PCI equations that are based on statistical regression analysis. Different attributes are used for different pavement families. A new pavement condition rating system that provides a consistent, unified approach in rating pavements in Iowa has been proposed.

The proposed 100-scale system is based on five individual indices derived from specific distress data and pavement properties, and an overall pavement condition index, PCI-2, that combines individual indices using weighting factors.

The different indices cover cracking, ride, rutting, faulting, and friction. The Cracking Index is formed by combining cracking data (transverse, longitudinal, wheel-path, and alligator cracking indices). Ride, rutting, and faulting indices utilize the International Roughness Index (IRI), rut depth, and fault height, respectively. The overall pavement condition index, PCI-2, is calculated as follows for Portland cement concrete (PCC) and asphalt concrete (AC) surfaces:

\[
\text{PCI-2}_{\text{PCC}} = 0.40 \times \text{(Cracking Index)} + 0.40 \times \text{(Riding Index)} + 0.20 \times \text{(Faulting Index)}
\]

\[
\text{PCI-2}_{\text{AC}} = 0.40 \times \text{(Cracking Index)} + 0.40 \times \text{(Riding Index)} + 0.20 \times \text{(Rutting Index)}
\]
1. INTRODUCTION

The work described in this report documents the activities performed for the evaluation, development, and enhancement of the Iowa Department of Transportation (DOT) pavement condition information as part of their pavement management system operation. The study covers all of the Iowa DOT’s interstate and primary National Highway System (NHS) and non-NHS systems.

Personnel from the Iowa DOT Pavement Management Committee, including personnel from the offices of Design, Maintenance, Materials, Program Management, and Systems Planning, provided guidance and support throughout the project.

1.1 Background

An index, or pavement condition index, provides a numerical rating for the condition of road segments within the road network. Researchers and highway agencies around the country have developed a host of pavement indices to measure or evaluate the pavement condition.

For instance, a surface distress index may aggregate several distress types (e.g., cracking, rutting, bleeding for asphalt pavement; and cracking, faulting, spalling for concrete pavement). The selected distress types included in the index depend on agency needs. Alternatively, each distress type may be expressed as an individual index. Similarly, other pavement characteristics that are perceived to be important to road users, such as roughness or ride quality, are often utilized as an index. These different pavement measures can be combined in an overall index.

Traditionally, pavement indices have been used by engineers to describe the current and future quality of pavement networks, provide a warning system for early identification of maintenance and rehabilitation requirements, and estimate future funding needs (McNeil et al. 1992). The asset management paradigm, along with the increasing demand for accountability in infrastructure management, have promoted strategic decision making approaches for the preservation, operation, expansion, and improvement of transportation infrastructure systems (AASHTO 2011, PB Consult Inc. et al. 2004).

This evolution and need for change have motivated researchers, practitioners, and public officials to use existing pavement condition indices for strategic decision making, such as setting statewide goals for infrastructure conditions, and to compare the performance of highway systems among the states.
2. EVALUATION OF PAVEMENT CONDITION BY OTHER STATES IN THE US

Pavement condition is often a function of exhibited distress types, the severity of these distress types, and the extent of these distress types (extent of occurrence in surveyed pavement area) (PB Consult Inc. et al. 2004, Carey and Irick 1962). The primary challenge is how to combine these characteristics into a single distress index if needed.

The development of an overall condition index is even more challenging because other pavement characteristics such as surface roughness are also considered, adding an extra dimension to the index. Existing pavement performance indices combine these characteristics through various methods as follows:

- Direct panel rating
- Utility functions
- Deduct values and weighting factors

2.1. Indices Determined Based on Direct Panel Ratings

Early efforts in developing pavement condition indices used direct panel ratings. This approach involves a panel that drives the surveyed pavement (normally at posted speed) and subjectively rates the pavement sections either using a numeric scale or verbal descriptions such as good, fair, poor, etc., based on observed distress types and ride quality.

Subjective panel ratings date back to the American Association of State Highway and Transportation Officials (AASHTO) road tests in the 1950s (Carey and Irick 1962). A panel rated sections of differing pavement types in Ottawa, Illinois on a 0 to 5 scale known as the Present Serviceability Rating (PSR). Because PSR depends on passenger perception of ride quality, it generally has stronger correlation with road roughness measurements than with distress measurements.

Two of the state DOTs that the researchers found to currently use distress indices derived from direct subjective panel ratings are Oregon and Michigan as follows:

- **Oregon’s Good-Fair-Poor (GFP) Rating Method**: The Oregon DOT (ODOT) uses this rating method primarily for non-NHS highways. Occasionally, the GFP rating method is used for a few NHS highways in high-density urban areas for safety and practicality (ODOT 2012). The GFP method involves two-person panels who drive the surveyed pavement at 50 mph or the posted speed (whichever is lower) and rate pavement sections as very good, good, fair, poor, or very poor based on observed distress types and ride quality.

- **Michigan’s Sufficiency Rating (SR)**: This is a subjective “windshield survey” that rates pavement distress condition and ride quality on a 1 to 5 scale, with one being the best. Ratings are based on the observed amount and severity of pavement cracking, faulting, wheel
tracking, and patching. The Michigan DOT (MDOT) uses additional pavement performance indicators to complement the SR, including a detailed distress index, a ride quality index, and an estimation of remaining service life.

While panel ratings have the advantages of being simple and representative of the perception of roadway users, they are inherently subjective and do not provide sufficient engineering data that can be used to identify effective repair alternatives.

2.2. Indices Computed Based on Utility Values

The utility values method was developed by the Texas DOT (TxDOT) in the late 1980s and resulted in two primary pavement performance indices:

- **Distress Score (DS):** 1 to 100 index with 100 representing no or minimal distress. DS considers various sets of distress types for various pavement types.

- **Condition Score (CS):** 1 to 100 index with 100 representing no or minimal distress and roughness. CS considers the pavement DS and roughness (measured using International Roughness Index/IRI).

Both DS and CS are implemented in the TxDOT Pavement Management Information System (PMIS) and are computed in Equations 1 and 2 as follows:

\[
DS = 100 \times \prod_{i=1}^{n} U_i
\]
(1)

\[
CS = URide \times DS
\]
(2)

where \(U_i\) is a utility value for distress type \(i\) and is computed in Equation 3 as follows:

\[
U_i = \begin{cases}
1.0 & \text{when } L_i = 0 \\
1 - \alpha e^{-\left(\frac{\rho}{L_i}\right)^\beta} & \text{when } L_i > 0
\end{cases}
\]
(3)

\(L_i\) represents the density of the distress in the pavement section (quantity of distress per mile, quantity of distress per section area, quantity of distress per 100 ft, etc.). \(\alpha\) (Maximum Loss factor), \(\beta\) (Slope factor), and \(\rho\) (Prolongation factor) control the location of the utility curve’s inflection point and the slope of the curve at that point, as illustrated in Figure 1.
U_i ranges between zero and 1.0 and represents the quality of a pavement in terms of overall usefulness (e.g., a U_i of 1.0 indicates that distress type i is not present and thus is most useful).

![Utility Curve](image)

Figure 1. General shape of utility curves used for computing TxDOT pavement performance indices

2.3. Indices Computed Based on Deduct Values

The deduct values method captures the effect of distress type, severity, and extent, and ride quality, on the total score through deduct values. The general expression for computing a distress index using deduct values as follows in Equation 4:

$$CI = C - (a_1 d_1 + a_2 d_2 + a_3 d_3 + \ldots + a_n d_n + a_r d_r)$$ \hspace{1cm} (4)

where CI is the condition index, C is the maximum value of the distress/condition index (perfect score), $a_{1,2,\ldots,n}$ are the adjustment factors for distress types 1 through n, d_i is the deduct values for distress types 1 through n, a_r is the adjustment factor for roughness, and d_r is the deduct value for roughness.

A widely used distress index that is derived from deduct values is the Pavement Condition Index (PCI), developed in the late 1970s by the U.S. Army Corp of Engineers (Shahin et al. 1980). The PCI scale ranges from 0 to 100, with 100 representing the perfect score (a pavement in excellent condition).

In 2000, the American Society for Testing of Materials (ASTM) adopted the PCI method as a standard practice for pavement condition index surveys of roads and parking lots (ASTM D 6433). The general expression for computing PCI is as follows in Equation 5 (Shahin et al. 1978, Shahin et al. 1980).
\[PCI = C - \sum_{i=1}^{p} \sum_{j=1}^{m_i} a(T_i, S_j, D_j) F(t, q) \]

(5)

where \(C \) is the maximum value of the condition index (perfect score); \(a(T, S, D) \) is the deduct value function that varies with distress type \((T)\), severity \((S)\), and density \((D)\); \(F(t, q) \) is an adjustment function that varies with total deduct value \((t)\) and number of deducts \((q)\); \(i \) and \(j \) are counters for distress types and severity levels, respectively; \(p \) is the total number of observed distress types; and \(m_i \) is the number of severity levels for the \(i \) th distress type.

Typically, three levels of severity are used (low, medium, and high). Most state DOTs use distress indices that are derived from deduct values.

2.4. Pavement Condition Indices in the US

2.4.1. Iowa DOT

The Iowa DOT PMIS database contains information of homogeneous pavement segments (i.e., pavement management sections). The data for each pavement section include the following shown in Table 1.

Table 1. Iowa DOT PMIS data for each pavement section

<table>
<thead>
<tr>
<th>Category</th>
<th>Field Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section control</td>
<td>year of data entry, identification no, highway system, route, beginning and</td>
</tr>
<tr>
<td>information</td>
<td>ending mileposts, pavement type, county no, DOT district, construction year,</td>
</tr>
<tr>
<td></td>
<td>resurfacing year, segment length, city no, urban area code</td>
</tr>
<tr>
<td>Condition data</td>
<td>IRI, friction, fault height, rut depth, pavement condition index</td>
</tr>
<tr>
<td>Distress data</td>
<td>test year, transverse cracking, longitudinal cracking, wheel-path cracking,</td>
</tr>
<tr>
<td></td>
<td>alligator cracking, joint spalling, durability cracking, patching</td>
</tr>
<tr>
<td>Structural data</td>
<td>test date, structural no, 80% structural rating, average K-rating, falling</td>
</tr>
<tr>
<td></td>
<td>weight deflectometer</td>
</tr>
<tr>
<td>Traffic data</td>
<td>average daily traffic, average daily truck traffic, predicted 18-kip ESALs,</td>
</tr>
<tr>
<td></td>
<td>annual 18-kip ESALs, accumulated traffic, percent life used based on traffic</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>maintenance region and garage, speed limit, surface type, pavement depth and</td>
</tr>
<tr>
<td></td>
<td>width, surface treatment, aggregate durability class, drainage, shoulder</td>
</tr>
<tr>
<td></td>
<td>information</td>
</tr>
</tbody>
</table>

IRI=International Roughness Index
ESALs=equivalent single axle loads

The PCI for the PMIS sections is calculated using equations that were obtained using statistical regression analysis. The variables used in the regression equations vary based on the following:
• Pavement type
• Highway system (e.g., interstate or primary roads that are US and Iowa highways)
• Source of distress data collection (e.g., in-house or contractor)

In the mid-1990s, the Iowa DOT started contracting out pavement data collection. The shift resulted in not only a change in the collection method (e.g., more automation) but also the variety of the information. Furthermore, default equations where PCI is deteriorated based on age are also used when there is no distress data available. The basis for PCIs used by the Iowa DOT are summarized in Table 2.

Table 2. PCI matrix used by the Iowa DOT

<table>
<thead>
<tr>
<th>Pavement Type</th>
<th>Highway System</th>
<th>Main PCI Equation Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1 (Portland cement concrete)</td>
<td>Interstate</td>
<td>Age; percent life used based on ESALs; longitudinal cracking</td>
</tr>
<tr>
<td></td>
<td>Primary</td>
<td>IRI; age; durability cracking; structural rating at joints</td>
</tr>
<tr>
<td>Type 2A (Continuously reinforced concrete with asphalt treated base)</td>
<td>Interstate</td>
<td>Age; aggregate durability class; IRI; pavement thickness</td>
</tr>
<tr>
<td>Type 2B (Continuously reinforced concrete with cement treated base)</td>
<td>Interstate</td>
<td>Aggregate durability class; friction; pavement thickness; combined cracking and patching</td>
</tr>
<tr>
<td>Type 3 (Composite)</td>
<td>Primary</td>
<td>IRI; age; transverse cracking; longitudinal wheel-path cracking; percent life used based on ESALs</td>
</tr>
<tr>
<td>Type 3A (Composite built on old jointed Portland cement concrete pavement)</td>
<td>Interstate</td>
<td>Age rating; friction; annual ESALs; patching; surface layer thickness; total asphalt depth</td>
</tr>
<tr>
<td>Type 3B (Composite built on continuously reinforced Portland cement concrete pavement)</td>
<td>Interstate</td>
<td>Aggregate durability class; IRI; percent life used based on ESALs; relative structural ratio; total asphalt depth</td>
</tr>
<tr>
<td>Type 4 (Full-depth asphalt)</td>
<td>Interstate</td>
<td>Age; base thickness; IRI</td>
</tr>
<tr>
<td></td>
<td>Primary</td>
<td>IRI; age; alligator cracking; patching</td>
</tr>
</tbody>
</table>

ESALs=equivalent single axle loads
IRI=International Roughness Index

2.4.2. State Practices in the US

Table 3 presents pavement condition performance measures used by highway agencies in the US. It includes the use of pavement scores by the states, including the distresses that are used for generating the scores, the score scales, and descriptions. The data is compiled from sources listed in the References for Table 3 at the end of this report and may not reflect the most current practice for each state.
Table 3. Pavement condition rating practices in the US

<table>
<thead>
<tr>
<th>State</th>
<th>Data Collected</th>
<th>Individual Indices</th>
<th>Overall Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>Cracking, patching, roughness, rutting, raveling</td>
<td></td>
<td>Pavement Condition Rating (PCR); scale of 100; regression equation</td>
</tr>
<tr>
<td>Alaska</td>
<td>Roughness (IRI), rutting</td>
<td></td>
<td>Pavement Serviceability Rating (PSR); scale of 5</td>
</tr>
<tr>
<td>Arizona</td>
<td>Roughness (IRI), cracking, rutting, and patching</td>
<td>Present Serviceability Rating (PSR); 0 to 5; Pavement Distress Index (PDI)</td>
<td>AASHTO Present Serviceability Index (PSI); scale of 100</td>
</tr>
<tr>
<td>Arkansas</td>
<td>Roughness (IRI), rutting, faulting, and cracking</td>
<td></td>
<td>Rigid=0.65×Defects + 0.35×Ride, Flexible=Ride(^{1/2})</td>
</tr>
<tr>
<td>California</td>
<td>Roughness (IRI), Mean Profile Depth (MPD) in the wheel paths, ground penetrating radar (GPR) used as the tool for data collection of continuous layer thicknesses, cracking, rutting, faulting</td>
<td>Pavement Condition Survey (PCS)</td>
<td></td>
</tr>
<tr>
<td>Colorado</td>
<td>Roughness (IRI), rutting, cracking (fatigue, transverse, longitudinal, and corner break)</td>
<td>Normalized into individual index values; scale of 100</td>
<td>Remaining Service Life (RSL) in years determined by the minimum index</td>
</tr>
<tr>
<td>Connecticut</td>
<td>Roughness/ride (IRI), cracking (transverse, structural, wheel-path), rutting</td>
<td>Roughness (Ride) Index; Transverse Cracking Index; Structural Cracking Index; Wheel-path Index; Rutting Index</td>
<td>Pavement Condition Index (PCI) at network level; scale of 9; roughness, distortion, cracking, disintegration, drainage are combined by Pavement Management System software</td>
</tr>
<tr>
<td>State</td>
<td>Data Collected</td>
<td>Individual Indices</td>
<td>Overall Index</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
</tbody>
</table>
| Delaware | Roughness (IRI), fatigue, joint reflection, block cracking, patching, transverse cracking, slab cracking, alkali silica reactivity (ASR), joint deterioration, joint seals, bleeding, and edge cracking | Ride Rating (from a calculated Ride Number based on IRI); Defect Rating (based on distress deducts) for rigid pavements
Crack Rating (based on predominant crack); Rut Rating (based on rut depth); Ride Rating (from a calculated Ride Number based on IRI) for flexible pavements | Overall Pavement Condition (OPC); Deducts from distresses; OPC = (Threshold Value) + [(Remaining Service Life)*Reduction Rate)] |
<p>| Florida | Roughness (IRI), cracking, raveling, patching, rut depth | Pavement Condition Rating (PCR); lowest of two/three represents the overall pavement condition/score |
| Georgia | Roughness (IRI), cracking (composite reflection, transverse, longitudinal, asphalt alligator/fatigue, punch-out), faulting | Present Serviceability Rating (PSR); if IRI is reported, PSR is not reported. |
| Hawaii | Roughness (IRI), cracking (transverse, longitudinal, alligator/fatigue, punch-out), faulting | Pavement Condition Index (PCI); scale of 100 deducts based on ASTM/AASHTO |</p>
<table>
<thead>
<tr>
<th>State</th>
<th>Data Collected</th>
<th>Individual Indices</th>
<th>Overall Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idaho</td>
<td>Roughness (IRI), rutting, cracking (alligator, block, edge, transverse, longitudinal), patching, and potholes for asphalt; transverse slab cracking, spalling, scaling, corner cracking and faulting for concrete</td>
<td>Cracking Index (CI)
 Roughness Index (RI); scale of 5
 Rutting Index; 0 to 1.50 in.</td>
<td>Good, fair, poor, very poor; Independent deficiency thresholds (e.g., poor and very poor) for each index</td>
</tr>
<tr>
<td>Illinois</td>
<td>Ride quality (IRI)</td>
<td>Condition Rating Survey (CRS) for distress; scale of 9</td>
<td></td>
</tr>
<tr>
<td>Indiana</td>
<td>Roughness (IRI), surface distress, rutting, skid resistance, deflection (falling weight deflectometer/FWD), and layers thickness</td>
<td>Pavement Condition Rating (PCR); deducts; scale of 100</td>
<td></td>
</tr>
<tr>
<td>Kansas</td>
<td>Roughness (IRI), transverse cracking and rutting for flexible pavements, joint distress and faulting for rigid pavements</td>
<td>Performance Level (PL): three-digit number stating the levels of pavement condition; pavement condition parameter 1, 2, 3 from best to worst</td>
<td></td>
</tr>
<tr>
<td>Kentucky</td>
<td>Roughness (IRI), distress, rut depth, skid resistance</td>
<td>Rideability Index (RI)</td>
<td>Condition Index; demerit points (i.e., higher value poor condition); adjusted to traffic</td>
</tr>
<tr>
<td>State</td>
<td>Data Collected</td>
<td>Individual Indices</td>
<td>Overall Index</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Louisiana</td>
<td>Roughness (IRI), rutting, cracking (fatigue/alligator, longitudinal in the wheel path, transverse), surface friction, joint faulting, joint spalling, punch-out, patching, raveling</td>
<td>Distress indices depending on the pavement type (hot mix asphalt/HMA, jointed plain concrete pavement/JPCP, continuously reinforced concrete pavement/CRCP, Composite); scale of 100. Present Serviceability Rating (PSR) from IRI</td>
<td>Present Serviceability Index (PSI): a subjective rating of the pavement condition made by a group of individuals riding over the pavement; may also be determined based on condition survey information</td>
</tr>
<tr>
<td>Maine</td>
<td>Roughness/ride quality (IRI), transverse, longitudinal, alligator cracking, rut</td>
<td>Pavement Condition Rating (PCR); scale of 0 to 5 Combined equally weighted IRI, rutting, structural and functional cracking</td>
<td></td>
</tr>
<tr>
<td>Maryland</td>
<td>Rut, cracking, friction, IRI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massachusetts</td>
<td>Distress, rut, IRI</td>
<td>Condition/distress Index Rut Index Ride Index (IRI)</td>
<td>Pavement Serviceability Index (PSI); scale of 5</td>
</tr>
<tr>
<td>Michigan</td>
<td>Distress, rutting, IRI</td>
<td>Sufficiency Rating (SR); scale of 5 Distress Index (DI) Pavement Surface Evaluation and Rating (PASER); scale of 10 Ride Quality Index (RQI)</td>
<td>Remaining Service Life (RSL)</td>
</tr>
<tr>
<td>State</td>
<td>Data Collected</td>
<td>Individual Indices</td>
<td>Overall Index</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Minnesota</td>
<td>Surface distress, IRI</td>
<td>Surface Rating (SR); scale of 4.0</td>
<td>Pavement Quality Index (PQI); scale of 4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ride Quality Index (RQI) correlated to IRI via input from road users; scale of 5</td>
<td>(Combine RQI and SR)</td>
</tr>
<tr>
<td>Minnesota</td>
<td></td>
<td></td>
<td>PQI=$\sqrt{RQI \times SR}$</td>
</tr>
<tr>
<td>Mississippi</td>
<td>Roughness (IRI), cracking, potholes, patching, punch-out, rutting, and faulting</td>
<td>Roughness Rating: IRI Distress Rating: (cracking, potholes, patching , punch-out, rutting, and faulting)</td>
<td>Pavement Condition Rating (PCR); deducts from 100; very poor to very good scale</td>
</tr>
<tr>
<td>Missouri</td>
<td>Distress, IRI</td>
<td>Condition Score for surface; scale of 20</td>
<td>Pavement Serviceability Rating (PSR)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Roughness; scale of 10</td>
<td>PSR=(2×roughness score)+(condition score)</td>
</tr>
<tr>
<td>Montana</td>
<td>Miscellaneous cracking, alligator cracking, rut, ride quality</td>
<td>Ride Index (RI); scale of 100</td>
<td>Overall Performance Index (OPI); combined weighted amounts of four indices; scale of 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rut; scale of 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alligator Cracking Index (ACI); scale of 100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Miscellaneous Cracking Index (MCI); scale of 100</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>Data Collected</td>
<td>Individual Indices</td>
<td>Overall Index</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Nebraska</td>
<td>Roughness/ride quality (IRI), percentage of bituminous surfacing (BIT) that is cracked, percentage of Portland cement concrete (PCC) panels that are cracked, cracking and rutting of hot mix asphalt (HMA), faulting, joint distress, slab cracking and repair amount for Portland cement (PC)</td>
<td>Cracking Index: % cracked surface Present Serviceability Index (PSI): function of IRI; scale of 5</td>
<td>Nebraska Serviceability Index (NSI); scale of 100</td>
</tr>
<tr>
<td>Nevada</td>
<td>Roughness IRI, rut depth, fatigue, block cracking, non-wheel path transverse block cracking, patching, bleeding, raveling, and friction number</td>
<td></td>
<td>Present Serviceability Index (PSI); scale of 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\text{PSI} = 5 \times e^{(-0.0041 \times \text{IRI})} - 1.38 \times \text{RD}^2)</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>Roughness (IRI), surface distress, rutting</td>
<td>Rut Rate Index (RRI) Surface Distress Index (SDI) Riding Comfort Index (RCI) All scale of 5</td>
<td>Decision tree dominated by SDI</td>
</tr>
<tr>
<td>State</td>
<td>Data Collected</td>
<td>Individual Indices</td>
<td>Overall Index</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| New Jersey | Roughness IRI, surface distress, non load related distress, load related distress includes fatigue cracking and rutting | Surface Distress Index (SDI); scale of 5
Non Load Related Distress Index (NDI)
Load Related Distress Index (LDI); LDI includes fatigue cracking and rutting; deducts from 500; divided by 100
HMA: SDI=(NDI×LDI)÷5
PC: SDI=NDI | Pavement Condition based on IRI and SDI; poor, fair, good |
| New Mexico | Roughness (IRI), surface distress, rutting | Distress Rating | Pavement Serviceability Index (PSI); 60% IRI and 40% distress; scale of 5
PSI = 0.041666 X, if X ≤ 60
PSI = [0.0625(X – 60)] + 2.4999, if X > 60
X = 100 – \left[\frac{0.6(\text{IRI} – 25) + (0.4\text{DR})}{2.9}\right] | |
<p>| New York | Roughness (IRI), surface distress (alligator cracking, faulting, spalling and widening drop-off), rut depth | Pavement Surface Rating/Surface Distress Rating; scale of 10 | Pavement Condition Index (PCI); scale of 100; deducts for surface distress, ride quality, rutting, faulting, and dominant distresses |</p>
<table>
<thead>
<tr>
<th>State</th>
<th>Data Collected</th>
<th>Individual Indices</th>
<th>Overall Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Carolina</td>
<td>Alligator cracking, transverse cracking, rutting, raveling, oxidation, bleeding, ride quality (bumpiness during driving), patching</td>
<td></td>
<td>Pavement Condition Rating (PCR); scale of 100; deducts for eight major distresses</td>
</tr>
<tr>
<td>North Dakota</td>
<td>Roughness (IRI), alligator cracking, patching and rutting for hot mix asphalt (HMA), corner breaks, longitudinal cracking, broken slab, patching and transverse cracking for Portland cement concrete (PCC)</td>
<td>Structural Index (SI) for HMA for distress; deducts due to alligator cracking, patching, rutting; subtract from 99 Slab Cracking Index (SCI) for PC; deducts for corner breaks, longitudinal cracking, broken slab, patching, transverse cracking</td>
<td>Public Ride Perception Index (PRPI); scale of 3 based on IRI value (<0.95, 0.96-1.57, 1.58-2.3 and >2.4m/km)</td>
</tr>
<tr>
<td>State</td>
<td>Data Collected</td>
<td>Individual Indices</td>
<td>Overall Index</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Ohio</td>
<td>Roughness (IRI), raveling, bleeding, patching, debonding, crack sealing, deficiency, rutting, settlement, potholes, wheel track cracking, block and transverse cracking, longitudinal joint cracking, edge cracking, and thermal cracking for asphalt pavement; raveling, bleeding, patching, debonding, rutting, pumping, shattered slab, settlement, transverse cracking, longitudinal cracking, corner breaks, and punch-outs for composite pavement; longitudinal joint spalling, patching, pumping, faulting, settlement, transverse joint spalling, transverse cracking for jointed reinforced or plain concrete pavement; pop-outs, patching, pumping, settlements and waves, transverse crack spacing, longitudinal cracking, punch-outs or edge breaks, and spalling for continuously reinforced concrete pavements</td>
<td>Pavement Condition Rating (PCR); scale of 100</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>Data Collected</td>
<td>Individual Indices</td>
<td>Overall Index</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>Distress, rutting, and functional cracking for hot mix asphalt (HMA); fault, slab cracking, and joint cracking for Portland cement (PC); structural distress for continuously reinforced concrete pavement (CRCP); ride quality (IRI) for all types</td>
<td>Indices for HMA: Ride (IRI) Structural Index (100 – Min[∑Fatigue Deduct Values]) Rutting Functional Cracking</td>
<td>Pavement Quality Index (PQI) for HMA PQI=0.40×Ride Index+0.30×Rut Index+0.15×Functional Index+0.15×Structural Index</td>
</tr>
<tr>
<td>Oregon</td>
<td>Ride quality (IRI); fatigue cracking, rut, patching, raveling and no-load/environmental cracking for hot mix asphalt (HMA); fatigue, rut and patching for jointed plain concrete pavement (JPCP) and continuously reinforced concrete pavement (CRCP)</td>
<td>Indices for HMA: Fatigue Rut Patching Raveling No-load Indices for JPCP and CRCP: Fatigue Rut Patching</td>
<td>Overall Index for HMA; Min (Rut×100, Fatigue×Patchings×Raveling×No-Load×100); scale of 100; also good-fair-poor</td>
</tr>
<tr>
<td>State</td>
<td>Data Collected</td>
<td>Individual Indices</td>
<td>Overall Index</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
| Pennsylvania | Ride quality (IRI); transverse cracking, transverse joint spalling, joint faulting, broken slab, bituminous patching, shoulder drop-off and surface defect for Portland cement concrete (PCC); surface distress, joint seal failure, longitudinal joints palling, transverse cracking, transverse joint spalling, surface defects and rutting for hot mix asphalt (HMA) | Ride Index (RI)
Structural Index: 20% transverse cracking, 15% transverse joint spalling, 15% joint faulting, 25% broken slab, 20% bituminous patching, and 5% surface defect
Surface Distress Index: 15% joint seal failure, 20% longitudinal joint spalling, 20% transverse cracking, 20% transverse joint spalling, 15% surface defects, and 5% rutting
Safety Index: 5% longitudinal joint spalling, 5% transverse cracking, 10% transverse joint spalling, 5% faulting, 5% broken slab, 10% bituminous patching, 20% surface defect, 20% rutting, and 20% shoulder drop-off | Overall Pavement Index (OPI); scale of 100;
OPI = 0.45×Ride Index + 0.30×Structural Index + 0.20×Surface Distress Index + 0.05×Safety Index |
| South Carolina | Ride quality (IRI), distress, and rutting | Pavement Distress Index (PDI); includes rutting; based on AASHTO PCI; scale of 5
PDI = 5.0 – [ADV: adjusted distress value]
Pavement Serviceability Index (PSI); based on IRI; scale of 5
PSI = 5.0×e^{(-0.00284×IRI)} | Pavement Quality Index (PQI); scale of 5
PQI = 1.158 + 0.138 × PDI × PSI |
<table>
<thead>
<tr>
<th>State</th>
<th>Data Collected</th>
<th>Individual Indices</th>
<th>Overall Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Dakota</td>
<td>Roughness (IRI), fatigue cracking, patching, transverse cracking, block cracking, rutting for hot mix asphalt (HMA); corner cracking, d-cracking and alkali silica reactivity (ASR), faulting, joint spalling, joint seal damage, punch-outs for Portland cement concrete (PCC)</td>
<td>Each is an index on a scale of 5</td>
<td>Pavement Serviceability Rating (PSR)</td>
</tr>
<tr>
<td>Tennessee</td>
<td>Ride quality (IRI), distress and rutting</td>
<td>Present Serviceability Index (PSI); based on roughness; scale of 5 $PSI = 5 \times e^{-0.0055 \times IRI}$</td>
<td>Pavement Quality Index (PQI); scale of 5 $PQI = PDI^{0.7} \times PSI^{0.3}$</td>
</tr>
<tr>
<td>State</td>
<td>Data Collected</td>
<td>Individual Indices</td>
<td>Overall Index</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>
| Texas | Shallow rutting, deep rutting, patching, failures, block cracking, alligator cracking, longitudinal cracking, transverse cracking, raveling, and flushing for asphalt concrete pavement (ACP); spalled cracks, punch-outs, asphalt patches, concrete patches, and average crack spacing for continuously reinforced concrete pavement (CRCP); failed joints and cracks, failures, slabs with longitudinal cracks, shattered slabs, concrete patches and apparent joint spacing for jointed concrete pavement (JCP) | Distress Score (DS); scale of 100 Ride Score (RS); scale of 5 $DS = 100 \times \prod_{i=1}^{n} U_i$ | Condition Score (CS); scale of 100; combines distress and roughness; based on utility values $DS = 100 \times \prod_{i=1}^{n} U_i$
CS = URide × DS
$U_i = \begin{cases} 1.0 & \text{when } L_i = 0 \\ 1 - \alpha e^{-\frac{L_i}{\bar{L}_i}} & \text{when } L_i > 0 \end{cases}$
Ui: Utility value for distress type
Li: Density of the distress |

<table>
<thead>
<tr>
<th>State</th>
<th>Data Collected</th>
<th>Individual Indices</th>
<th>Overall Index</th>
</tr>
</thead>
</table>
| Utah | Roughness (IRI); longitudinal, transverse and block cracking for flexible; corner breaks and shattered slabs for rigid | RIDE: Roughness based on IRI
For PC:
CONK: Structural cracking from corner breaks and cracked slabs
FALT: Faulting (difference in slab elevation)
JONT: Joint index from spalling and asphalt patching
For asphalt:
RUT: Rutting
ENVCK: Environmental cracking (transverse, longitudinal, and block cracking)
WPCK: Wheel-path fatigue cracking
Scale of 100 | Overall Condition Index (OCI); scale of 100
OCI = Average of all Indices |
| Vermont | Roughness (IRI), structural cracking, transverse cracking, depth of wheel-path deformation and rutting | Structural Cracking Index
Transverse Cracking Index
Depth of Wheel path Deformation Index
Rutting
Roughness Index | Pavement Condition Index (PCI); scale of 100 |
<table>
<thead>
<tr>
<th>State</th>
<th>Data Collected</th>
<th>Individual Indices</th>
<th>Overall Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virginia</td>
<td>Ride quality (IRI); fatigue cracking, patching, rutting, transverse and longitudinal cracking for asphalt; slab distress for jointed concrete; concrete punch-out and concrete distress for continuously reinforced concrete pavement</td>
<td>Pavement condition indices from individual distress data (scale of 100): For asphalt: Load-related Distress Rating (LDR) (fatigue cracking, patching, rutting), and Non-load-related Distress Rating (NDR) (transverse and longitudinal cracking) For jointed concrete pavement: Slab Distress Rating (SDR) For continuously reinforced concrete pavement: Concrete Punch-out Rating (CPR) and Concrete Distress Rating (CDR) IRI reported separately as ride quality</td>
<td>Critical Condition Index (CCI); lowest index based on the surface type; scale of 100</td>
</tr>
<tr>
<td>Washington</td>
<td>Ride quality (IRI), distress and rutting</td>
<td>Pavement Structural Condition (PSC) Pavement Rutting Condition (PRC) Pavement Profile Condition (PPC): ride based on IRI</td>
<td>Pavement Structural Condition (PSC); deducts based on surface distress; scale of 100</td>
</tr>
<tr>
<td>Washington DC</td>
<td>Pavement Condition Index (PCI) Visual inspection by raters</td>
<td>Pavement Condition Index (PCI); ASTM D 6433</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>Data Collected</td>
<td>Individual Indices</td>
<td>Overall Index</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>---</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>West Virginia</td>
<td>Alligator/longitudinal cracking, transverse/block cracking and rut for asphalt; faulting/damaged joints slab crack for Portland cement concrete (PCC)</td>
<td>Asphalt:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Alligator/Longitudinal Cracking Index (SCI)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Transverse/Block Crack Index. (ECI)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Rut Index (RDI)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rigid:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Faulting/Damaged Joints Index (JCI)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Slab Cracking Index (CSI)</td>
<td></td>
</tr>
<tr>
<td>Wisconsin</td>
<td>Ride quality (IRI), distress and rutting</td>
<td>Pavement Distress Index (PDI)</td>
<td></td>
</tr>
<tr>
<td>Wyoming</td>
<td>Slope variance, cracking, patching, rut</td>
<td></td>
<td>Present Serviceability Rating (PSR) 0 to 5</td>
</tr>
</tbody>
</table>
There is a wide variety of survey or index/score names used by the states, with inconsistencies among the state agencies as to the names (or nomenclature) and practices. However, the indices that are detailed in Table 3 are fairly representative of current practices among the DOTs throughout the US.
3. DEVELOPMENT OF PAVEMENT CONDITION INDICES FOR IOWA

The primary objective of this research study was to develop new performance indicators (or pavement condition indices) for Iowa pavements. The aim is that the new indices will not require changes to the current Iowa DOT data collection practices.

The current PCI equations are based on pure regression analysis that may exclude crucial input (e.g., certain distresses) and, similarly, may include some questionable ones (e.g., aggregate class). The proposed PCIs provide a consistent unified approach in terms of inputs used to calculate the condition measures.

The literature survey showed two universal inputs for evaluating pavement condition: roughness and surface distress. The Iowa DOT measures roughness using the International Roughness Index (IRI). Surface distresses collected vary extensively based on agency experience. The Iowa DOT collects transverse cracking, longitudinal cracking, wheel-path cracking, alligator cracking, durability cracking, joint spalling, and patching as surface distress. Rut depth for asphalt, fault height for Portland cement concrete, and friction are also collected.

This study proposes individual indices to measure and evaluate surface distress (cracking), roughness (ride), rutting, faulting, and skid resistance (friction), and an overall index combining individual ones and providing a general view of pavement quality.

Five individual indices are proposed:

- Cracking Index
- Riding Index
- Rutting Index
- Faulting Index
- Friction Index

An overall PCI that combines the Cracking, Riding, and Faulting indices for Portland cement concrete (PCC) pavements, and Cracking, Riding, and Rutting indices for asphalt concrete (AC) pavements has been developed. This new PCI is referred to as PCI-2 hereafter.

3.1. Data and Screening

The Iowa DOT PMIS database contains every aspect of pavement data: identification information, construction history, design information, maintenance, distress, etc. The pavement network is divided into segments (pavement management sections). The Iowa DOT maintains the PMIS section data based on historical records.

Each segment has the same pavement type, maintenance, and traffic levels. The segments are identified by route, county, direction of travel, and begin and end mileposts. By 2012, the total lengths of the pavement sections in the database were 2,571 miles (44.7% PCC surface and
55.3% AC surface) for interstate and 15,699 miles (29.2% PCC and 70.8% AC) for Iowa and US (or primary) routes.

The data used in this study cover the PMIS data from the beginning of 1998 through the end of 2012, totaling to more than 50,000 data points: each pavement section constitutes one data point every other year. The condition data—ride, rutting, faulting, cracking (e.g., alligator, longitudinal, transverse, durability), patching, and joint spalling—are updated for half of the system every year. Thus, a specific section is evaluated every other year and the same condition data is maintained for the section year after. The number of the data points available for each pavement section could be seven at most if a specific section dates back to 1998.

In some instances, an improvement such as major rehabilitation or reconstruction over the span of the segment results in a different pavement type, and, hence, a different record. In other cases, an improvement does not cover the entire span of the segment, new segments are created, and each individual segment naturally has the same construction history, traffic experience, maintenance history, but possibly a different pavement type.

Further screening of the data used in the analysis was as follows:

- **Pavement type:** The PMIS database has seven different pavement codes:

 Type 1: PCC pavement
 Type 2A: Continuously reinforced concrete (CRC) with asphalt treated base
 Type 2B: CRC with granular or cement treated base
 Type 3: Composite with asphalt surface
 Type 3A: Composite built on old jointed PCC pavement
 Type 3B: Composite built on old CRC pavement
 Type 4: AC pavement

 Due to the insufficient number of data, Types 2A and 2B were not included.

- **Age:** In an effort to exclude anomalies, an age limit was determined for each pavement type. For instance, a 75-year old PCC pavement exceeding its design life is an exception. Pavement age was calculated as the difference between the PMIS year (input date) and either the construction year or the resurfacing year. 50, 25, and 30 years were used for Types 1, 3, and 4 pavements, respectively. All sections for Types 3A and 3B were used in the analysis since these pavement types have a relatively lower number of sections. (Furthermore, the oldest sections for Types 3A and 3B were 34 and 32 years, respectively.)

- **Coverage:** During the collection of condition data, some of the sections are covered partially. The sections covered 50% or less were excluded from the analysis.
3.2. Individual Condition Indices

With the input from the advisory committee, five individual indices were established:

- Cracking Index (for both PCC and AC)
- Riding Index (for both PCC and AC)
- Rutting Index (for AC)
- Faulting Index (for PCC)
- Friction Index (for both PCC and AC)

Using the screening procedure described above, two different data tables were created: one used for the Cracking, Riding, Rutting, and Faulting Indices and another for the Friction Index. The reason for the two tables was that the data collection years for friction testing did not coincide with the years for the other pavement condition measurements and, furthermore, the number of sections tested or evaluated may vary, so the total number of points in these two tables are different.

The Cracking, Riding, Rutting, and Faulting Indices table included a total of 11,795 data points (or pavement sections) and the Friction Index table included 8,262 data points (or pavement sections). Figures 2 and 3 show the number of data points based on pavement type, which is further divided based on highway system (interstate or primary).

![Figure 2. Frequency of data points based on pavement type used for Cracking, Riding, Rutting, and Faulting Indices](image-url)
By 2012, in terms of total mileage, the Iowa pavement network consisted of 1,128 miles of Type 1 (PCC)-Interstate, 4,589 miles of Type 1 (PCC)-Primary, 8,390 miles of Type 3 (composite with asphalt), 530 miles of Type 3A (composite on old jointed PCC), 694 miles of Type 3B (composite on old CRC), 197 miles of Type 4 (AC)-Interstate, and 2,720 miles of Type 4 (AC)-Primary.

3.2.1. Cracking Index

For Iowa pavements, four types of cracking (transverse, longitudinal, longitudinal-wheel-path, and alligator) are defined for AC pavements; similarly, four types of cracking (transverse, longitudinal, longitudinal-wheel-path, and durability) are defined for PCC pavements. Iowa stores the cracking information based on quantity (e.g., count per km, m per km, m² per km) and severity (e.g., low, medium, and high).

For this study, each cracking type was assigned to a computed sub-index, such as the Transverse Cracking Sub-index; then, all the cracking sub-indices were combined into the Cracking Index. The procedure is described below:

- **Cracking Sub-indices:**

 For PCC pavements, two sub-indices for cracking were established: Transverse Cracking and Longitudinal Cracking. For longitudinal cracking, the Iowa DOT collects both longitudinal crack data and longitudinal-wheel-path crack data. These have the same structural implication for PCC pavements; therefore, these two types were combined into one Longitudinal Cracking Sub-index for PCC pavements. Durability cracking is aggregate
related and use of such material has been diminishing; therefore, durability cracking was not considered as an individual index, and hence, was not included in the Cracking Sub-index.

For AC pavements, four sub-indices were formulated: Transverse Cracking, Longitudinal Cracking, Longitudinal-wheel-path (or Wheel-path) Cracking, and Alligator Cracking.

- **Aggregating crack severities:**

 The Iowa DOT evaluates pavement cracking in three severity levels: low, medium, and high. Naturally, different severity means a different impact from a pavement management perspective. Low severity indicates cracks have become visible; whereas, high severity indicates immediate attention is needed. In order to calculate the index, these different severity levels needed to be defined as one severity level. The crack severities are aggregated using the coefficients of 1.0, 1.5, and 2.0 for low, medium, and high severities, respectively. In other words, all cracking is converted to low severity. These coefficients are selected based on past experience by the research team.

- **Indexing:**

 The researchers decided to establish the indices on a scale of 100, with 100 being the perfect, no distress condition and 0 being the worst condition. The current PCI used by the Iowa DOT is based on a scale of 100 and using the same scale would be more convenient for comparison purposes.

 A maximum value (threshold), which corresponds to a deduction of 100 points and therefore a cracking sub-index of 0, is determined for each crack type for each pavement type. These threshold values are listed in Table 4.

Table 4. Threshold values for the cracking sub-indices

<table>
<thead>
<tr>
<th>Sub-Index</th>
<th>Type 1-Interstate</th>
<th>Type 1-Primary</th>
<th>Type 3</th>
<th>Type 3A</th>
<th>Type 3B</th>
<th>Type 4-Interstate</th>
<th>Type 4-Primary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transverse Cracking (count/km)</td>
<td>150</td>
<td>150</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Longitudinal Cracking* (m/km)</td>
<td>250</td>
<td>250</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Wheel-path Cracking (m/km)</td>
<td>-</td>
<td>-</td>
<td>500</td>
<td>-</td>
<td>-</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Alligator Cracking (m²/km)</td>
<td>-</td>
<td>-</td>
<td>360</td>
<td>-</td>
<td>-</td>
<td>360</td>
<td>360</td>
</tr>
</tbody>
</table>

*Sum of longitudinal and longitudinal wheel-path data for PCC
Below the threshold value, reduction from a perfect score of 100 is proportional to the distress quantity. For instance, 125 m/km longitudinal cracking in Type 1 PCC pavement produces a Longitudinal Cracking Sub-index of 50. Similarly, 60 transverse cracks/km in Type 4 AC pavement results in a Transverse Cracking Sub-index of 80.

- **Calculating the Cracking Index:**

The Cracking Index is obtained by combining weighted sub-cracking indices. The weights, which are listed in Table 5, were determined based on expert input from Iowa DOT staff.

<table>
<thead>
<tr>
<th>Sub-Index</th>
<th>Weight (%)</th>
<th>PCC</th>
<th>AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transverse</td>
<td>60</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Longitudinal</td>
<td>40</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Wheel-path</td>
<td>-</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Alligator</td>
<td>-</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

The frequency distributions of the combined Cracking Index are shown in Figures 4 through 10. The histograms provide a snapshot of the data points used in the study.

For PCC (Type 1) pavements (Figures 4 and 5), 87.2% of the interstate and 58.6% of the primary pavement sections had Cracking Index values above 90. This was expected since the median transverse cracking was only 2.0 counts/km and the median longitudinal cracking was 3.0 m/km for the interstate sections. The median transverse cracking was 7.5 counts/km and the median longitudinal cracking was 13.3 m/km for the primary pavement sections.

Figure 4. Cracking Index for PCC Type 1-Interstate
For full-depth AC (Type 4) sections (Figures 6 and 7), 43.1% of the interstate and 30.1% of the primary sections had Cracking Index values above 90. For Type 4 interstate sections, the median cracking values were 60.0 counts/km, 204 m/km, 33.5 m/km, and 0 m²/km for transverse, longitudinal, wheel-path, and alligator cracks. For Type 4 primary pavement sections, the median cracking values were 120.0 counts/km, 124.8 m/km, 107.0 m/km, and 1.5 m²/km for transverse, longitudinal, wheel-path, and alligator cracks, respectively.
Composite with asphalt surface (Type 3) sections (Figure 8) had similar Cracking Index distribution to Type 4 primary: 29.6% of the sections had Cracking Index values above 90 and the median cracking values were 177.0 counts/km, 174.0 m/km, 90.0 m/km, and 0 m²/km for transverse, longitudinal, wheel-path, and alligator cracks, respectively.

Figures 8 and 9 show the Cracking Index results for composite built on old jointed PCC pavement (Type 3A) sections and composite built on old CRC pavement (Type 3B) sections, respectively.
3.2.2. Riding Index

The International Roughness Index (IRI) is almost unanimously accepted as the roughness measurement by highway agencies and the Iowa DOT also collects pavement IRI. Some agencies use the number directly as a measure of ride quality, some use it in a formula to scale it down, and some combine it with other measures.

The Riding Index in this study is based on the IRI measurements, as expressed on a scale of 100. IRI values below 0.5m/km are taken as a perfect 100; whereas, the values above 4.0m/km are 0 on the index scale. Although there is variation between agencies, an IRI below 1.5 m/km (95 in./mile) is generally considered as smooth (or good and very good) and an IRI above 2.7 m/km (170 in./mile) is considered as rough (poor and very poor). Based on these criteria, the proposed
Riding Index values above 65 can be taken as good or better and the values below 35 can be taken as poor or worse.

Naturally, AC surfaces have better riding as compared to PCC. Furthermore, the interstate routes have lower roughness compared to the primary roads. Figures 11 through 17 show the distribution of the Riding Index for each type of pavement section studied.

Figure 11. Riding Index for PCC Type 1-Interstate

Figure 12. Riding Index for PCC Type 1-Primary
Figure 13. Riding Index for composite with asphalt surface Type 3

Figure 14. Riding Index for composite built on old jointed PCC Type 3A
Figure 15. Riding Index for composite built on old CRC Type 3B

Figure 16. Riding Index for AC Type 4-Interstate

Figure 17. Riding Index for AC Type 4-Primary
Table 6 lists the median Riding Index value for each type of pavement section and the percent that were rated as good (Riding Index value above 65) and poor (Riding Index value below 35) when the data were further analyzed.

Table 6. Median Riding Index values and rating percentages by type of pavement section

<table>
<thead>
<tr>
<th>Pavement Sections</th>
<th>Median Value</th>
<th>Good or Better (%)</th>
<th>Poor or Worse (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1-Interstate</td>
<td>62.8</td>
<td>38.8</td>
<td>6.1</td>
</tr>
<tr>
<td>Type 1-Primary</td>
<td>46.5</td>
<td>11.2</td>
<td>34.4</td>
</tr>
<tr>
<td>Type 3-Primary</td>
<td>59.3</td>
<td>0</td>
<td>13.2</td>
</tr>
<tr>
<td>Type 3A-Interstate</td>
<td>65.0</td>
<td>49.3</td>
<td>6.3</td>
</tr>
<tr>
<td>Type 3B-Interstate</td>
<td>76.4</td>
<td>77.9</td>
<td>0.2</td>
</tr>
<tr>
<td>Type 4-Interstate</td>
<td>68.3</td>
<td>72.4</td>
<td>0</td>
</tr>
<tr>
<td>Type 4-Primary</td>
<td>62.5</td>
<td>45.4</td>
<td>8.1</td>
</tr>
</tbody>
</table>

3.2.3. Rutting Index

Rutting, which is the depression on wheel-paths in asphalt pavements, is one of the common surface distresses collected by state agencies. The proposed Rutting Index from this study uses rut depths available in the PMIS database with threshold values and a scale of 100. A threshold value of 12 mm is set to 0 on the Rutting Index scale of 100 and the values below 12 mm are applied as deductions proportionally.

The distribution of Rutting Index data points is shown in Figures 18 through 22 for the different types of pavement sections.
Figure 18. Rutting Index for composite with asphalt surface Type 3

Figure 19. Rutting Index for composite built on old jointed PCC Type 3A
Figure 20. Rutting Index for composite built on old CRC Type 3B

Figure 21. Rutting Index for AC Type 4-Interstate
Table 7 lists the median rutting values (in mm) and the median Rutting Index values for each type of asphalt pavement section.

Table 7. Median rutting values and Rutting Index values by type of pavement section

<table>
<thead>
<tr>
<th>Pavement</th>
<th>Median Value (mm)</th>
<th>Median Index Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 3-Primary</td>
<td>3.7</td>
<td>69.2</td>
</tr>
<tr>
<td>Type 3A-Interstate</td>
<td>3.9</td>
<td>67.5</td>
</tr>
<tr>
<td>Type 3B-Interstate</td>
<td>3.5</td>
<td>76.4</td>
</tr>
<tr>
<td>Type 4-Interstate</td>
<td>4.2</td>
<td>65.0</td>
</tr>
<tr>
<td>Type 4-Primary</td>
<td>4.0</td>
<td>66.7</td>
</tr>
</tbody>
</table>

3.2.4. Faulting Index

Faulting, which affects ride quality and is the differential vertical displacement between the adjoining slabs in PCC pavement, is one of the common distress types collected by agencies. The proposed Faulting Index uses the faulting measurements available in the PMIS database and is based on a scale of 100. Again, a threshold value of 12 mm is set to 0 on the index scale of 100.

The distribution of the data points for Faulting Index is given in Figures 23 and 24 for Type 1-Interstate and Type 1-Primary pavements, respectively.
The median faulting of the data set was 6.4 mm and 6.0 mm for Type 1-Interstate and Type 1-Primary, respectively. The median Faulting Index was 46.7 and 50.0 for Type 1-Interstate and Type 1-Primary, respectively. 4.3% of Type 1-Interstate sections and 12.1% of Type 1-Primary sections had a perfect Faulting Index of 100. However, both data sets showed a gap between 70 and 100. No in-depth analysis has been done whether the perfect scores are the result of missing data or not.

3.2.5. Friction Index

As mentioned earlier in this chapter, the testing or measurement cycle for skid resistance is different than that for distress data; therefore, a different data set containing 8,262 data points was created for the Friction Index. The Friction Index is also based on a scale of 100.
Figure 25 shows the distribution of the new pavement sections (3 years old or newer). Based on this data and input from the Iowa DOT, a threshold value of 60 was taken, equating values of 60 and higher to a perfect 100 Friction Index.

![Figure 25. Friction Index for sections three years old or newer](image)

Figures 26 through 32 show the Friction Index distribution for the different types of pavement sections.

![Figure 26. Friction Index for PCC Type 1-Interstate](image)
Figure 27. Friction Index for PCC Type 1-Primary

Figure 28. Friction Index for composite with asphalt surface Type 3
Figure 29. Friction Index for composite built on old jointed PCC Type 3A

Figure 30. Friction Index for composite built on old CRC Type 3B

Figure 31. Friction Index for AC Type 4-Interstate
Table 8 lists the median Friction Index values for each type of pavement section.

Table 8. Median Friction Index values by type of pavement section

<table>
<thead>
<tr>
<th>Pavement Sections</th>
<th>Median Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1-Interstate</td>
<td>81.7</td>
</tr>
<tr>
<td>Type 1-Primary</td>
<td>85.0</td>
</tr>
<tr>
<td>Type 3-Primary</td>
<td>85.0</td>
</tr>
<tr>
<td>Type 3A-Interstate</td>
<td>80.0</td>
</tr>
<tr>
<td>Type 3B-Interstate</td>
<td>83.3</td>
</tr>
<tr>
<td>Type 4-Interstate</td>
<td>78.3</td>
</tr>
<tr>
<td>Type 4-Primary</td>
<td>88.3</td>
</tr>
</tbody>
</table>

3.3. Overall Pavement Condition Index

The current PCI used by the Iowa DOT is based on pure statistical regression analysis where the variables (e.g., crack type and severity, traffic, structural data, material property, and age) may differ based on the pavement type. The proposed overall condition index, PCI-2, combines the individual indices described in the previous sections and provides an overall assessment of the pavement condition. PCI-2 is comprised of the Cracking Index, Riding Index, and Faulting Index for PCC pavements and the Cracking Index, Riding Index, and Rutting Index for AC pavements. The technical advisory committee decided not to include the Friction Index in PCI-2.
The weighting factors to combine the individual indices are based on experience in Iowa. The research team started with initial numbers and finalized them through comparative analysis using the current (or old) PCI as a benchmark. PCI-2 was finalized as follows:

\[
\text{PCI-2}_{\text{PCC}} = 0.40 \times (\text{Cracking Index}) + 0.40 \times (\text{Riding Index}) + 0.20 \times (\text{Faulting Index})
\]

\[
\text{PCI-2}_{\text{AC}} = 0.40 \times (\text{Cracking Index}) + 0.40 \times (\text{Riding Index}) + 0.20 \times (\text{Rutting Index})
\]

Figures 33 through 39 provide snapshots of the distribution of data points based on the type of pavement section.

![Figure 33. PCI-2 for PCC Type 1-Interstate](image1)

![Figure 34. PCI-2 for PCC Type 1-Primary](image2)
Figure 35. PCI-2 for Type 3

Figure 36. PCI-2 for Type 3A
Figure 37. PCI-2 for Type 3B

Figure 38. PCI-2 for AC Type 4-Interstate
The median and weighted average values for the 2012 highway network condition using PCI-2 are listed in Table 9 by type of pavement section.

Table 9. 2012 PCI-2 median values and weighted averages by type of pavement section

<table>
<thead>
<tr>
<th>Pavement Sections</th>
<th>Median Value</th>
<th>Weighted Average Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1-Interstate</td>
<td>73.3</td>
<td>74.1</td>
</tr>
<tr>
<td>Type 1-Primary</td>
<td>63.8</td>
<td>67.4</td>
</tr>
<tr>
<td>Type 3-Primary</td>
<td>67.4</td>
<td>67.2</td>
</tr>
<tr>
<td>Type 3A-Interstate</td>
<td>67.0</td>
<td>75.1</td>
</tr>
<tr>
<td>Type 3B-Interstate</td>
<td>78.6</td>
<td>81.5</td>
</tr>
<tr>
<td>Type 4-Interstate</td>
<td>71.8</td>
<td>78.2</td>
</tr>
<tr>
<td>Type 4-Primary</td>
<td>67.1</td>
<td>62.2</td>
</tr>
</tbody>
</table>

The weighted average of PCI-2 was calculated as follows:

\[
\text{(PCI} \times \text{Section length)} \div \text{(Total length)}
\]
4. COMPARISON OF PCI AND PCI-2

In evaluating pavement condition, the Iowa DOT has been using the current PCI for several decades and it serves the purpose fairly well; therefore, PCI was used as a benchmark to test PCI-2 in this study. The old and new values for each data point (specific pavement section in a specific year) were compared for analysis.

Figure 40a shows the comparison of the old and new PCIs for PCC Type 1-Interstate pavement sections.

![Figure 40a](image)

Figure 40. Comparison of PCI and PCI-2 for PCC Type 1-Interstate: (a) complete data set, (b) sections less than 10 years old, (c) sections 20 to 30 years old

The medians for PCI and PCI-2 s were 69.0 and 73.3, respectively, indicating that PCI-2 tends to predict a better pavement condition (with higher values). The weighted averages were 66.7 and 72.0 for PCI and PCI-2, respectively, implying that PCI-2 provides higher values.

Figures 40b and 40c show that old pavement sections are rated high and young sections are rated low with PCI-2 compared to the ratings using PCI. The reason is that the PCI equation (given below) uses age and cumulative traffic, which is also related to age, as a deduct factor; whereas, PCI-2 uses only the distress parameters (measured values such as rutting, cracking, and IRI).

\[
\text{PCI}_{\text{Type 1-Interstate}} = 102.24 - 1.03 \times (\text{Pavement age}) - 0.23 \times (\text{Percent life used based on ESALs}) - 0.13 \times (\text{Longitudinal cracking})
\]
Figure 41 presents the comparison of the new and old PCIs for Type 1-Primary pavement sections.

![Figure 41. Comparison of PCI and PCI-2 for PCC Type 1-Primary](image)

The data show a fair scatter around the equity line. PCI-2 predicts lower values compared to PCI: the medians are 67.0 and 63.8 for PCI and PCI-2, respectively; similarly, the weighted averages are 67.9 and 64.7 for PCI and PCI-2, respectively. The differences might be due to the fact that the current PCI equation (below) relies heavily on IRI and age and considers only durability cracking as a distress variable; whereas, PCI-2 uses only distresses as input.

\[
\text{PCI}_{\text{Type 1-Primary}} = 92.56 - 10.08 \times (\text{IRI}) - 0.52 \times (\text{Pavement age}) - 118.40 \times (\text{Durability cracking}) + 3.24 \times (\text{Structural rating at joints})
\]

(7)

Figure 42 compares PCI and PCI-2 for Type 3 composite pavement sections.
The data presents a fairly dense scatter around the equity line indicating good correlation. PCI-2 predicts a slightly higher condition rating. The medians for PCI and PCI-2 are 64.0 and 67.4, respectively. The weighted averages for PCI and PCI-2 are 63.0 and 66.9, respectively. The Type 3 PCI equation below also includes age as a deduct factor, resulting in a shift to comparatively lower values, particularly for the old sections.

\[
\text{PCI}_{\text{Type 3}} = 95.00 - 7.18 \times (\text{IRI}) - 0.92 \times (\text{Pavement age}) - 0.96 \times (\text{Transverse cracking}) - 0.22 \times (\text{Wheel-path cracking}) - 0.07 \times (\text{Percent life used based on ESALs})
\] (8)

Figure 43 plots PCI-2 versus PCI for Type 3A composite built on old jointed PCC pavement sections.
Figure 43. Comparison of PCI and PCI-2 for Type 3A composite built on old jointed PCC

There is no clear trend; however, the plot suggests PCI-2 predicts higher ratings. The medians are 55.0 and 67.0 for PCI and PCI-2, respectively, and the weighted averages are 50.6 for PCI and 64.5 for PCI-2. The equation below shows the current PCI calculation used for Type 3A pavements.

\[
PCI_{\text{Type 3A}} = 74.60 + 0.38 \times (\text{Rating based on age}) - 0.88 \times (\text{Friction}) - 0.04 \times (\text{Patching}) + 0.14 \times (\text{Surface layer thickness}) + 0.15 \times (\text{Total asphalt depth})
\]

(9)

The poor correlation is attributed to the fact that the current Type 3A PCI equation does not include distress data as input; whereas, the PCI-2 calculation solely utilizes distress data.

Figure 44 demonstrates the comparison between PCI and PCI-2 for Type 3B composite built on old CRC pavement sections.
The median values are 81.0 and 78.6 for PCI and PCI-2, respectively. Moreover, the weighted averages are 73.1 and 70.1 for PCI and PCI-2, respectively. Except for a few outliers, the general trend is that PCI-2 rates the pavement lower compared to PCI. Equation 10 is the current PCI equation for Type 3B.

\[
\text{PCI}_{\text{Type 3B}} = 28.60 - 8.73 \times \text{(Aggregate durability class)} - 10.63 \times \text{(IRI)} + 0.04 \times \text{(Percent life used based on ESALs)} + 0.42 \times \text{(Relative structural ratio)} + 0.51 \times \text{(Total asphalt depth)} \tag{10}
\]

Figure 45 plots PCI-2 versus PCI for AC Type 4-Interstate pavement sections.
Figure 45. Comparison of PCI and PCI-2 for AC Type 4-Interstate: (a) complete data set, (b) sections less than 10 years old, (c) sections 10 to 25 years old

PCI-2 results in considerably higher values compared to PCI. The median of PCI-2 is 71.8 compared to 47.0 for PCI. The weighted averages are 49.6 and 70.5 for PCI and PCI-2, respectively. In the current PCI equation (below), pavement age is an important deduction factor and this reflects in the older sections (Figure 44c), where the rating is higher with PCI-2.

\[
\text{PCI}_{\text{Type 4-Interstate}} = 23.07 - 3.77 \times (\text{Pavement age}) - 4.04 \times (\text{IRI}) + 0.23 \times (\text{Base thickness}) \quad (11)
\]

Figures 46 shows the comparison of PCI and PCI-2 for AC Type 4-Primary pavement sections.
The median values are 68.0 and 67.1 for PCI and PCI-2, respectively. Moreover, the weighted averages are 64.7 and 65.9 for PCI and PCI-2, respectively. The data shows a relatively good correlation as the current PCI calculation includes IRI and alligator cracking as the major deducts similar to the PCI-2 calculation. The current PCI equation for Type 4-Interstate pavements is given below.

\[
\text{PCI}_{\text{Type 4-Primary}} = 92.34 - 0.36 \times (\text{Pavement age}) - 11.11 \times \text{IRI} - 2.041 \times (\text{Alligator cracking}) + 0.55 \times (\text{Patching})
\]

(12)

Highway agencies use pavement performance curves to predict the future pavement condition and develop maintenance strategies. Pavements deteriorate over time and, ideally, the performance indicators (using the condition indices) reflect the time-dependent behavior, so that deterioration models can be developed. Figures 47 through 53 show the differences between using the existing PCI and the proposed PCI-2 based on pavement section age for each pavement type included in this study.

While developing performance curves was not the objective of this study, the plots were used to confirm whether the proposed PCI-2 could better reflect pavement aging. In general, the researchers found that PCI-2 captures pavement performance fairly well, particularly, considering there is no database manipulation involved.

Figure 46. Comparison of PCI and PCI-2 for AC Type 4-Primary
Figure 47. Deterioration of pavement condition by pavement age for PCC Type 1-Interstate: (a) using PCI, (b) using PCI-2

Figure 48. Deterioration of pavement condition by pavement age for PCC Type 1-Primary: (a) using PCI, (b) using PCI-2
Figure 49. Deterioration of pavement condition by pavement age for Type 3 composite with asphalt surface: (a) using PCI, (b) using PCI-2

Figure 50. Deterioration of pavement condition by pavement age for Type 3A composite built on old jointed PCC: (a) using PCI, (b) using PCI-2
Figure 51. Deterioration of pavement condition by pavement age for Type 3B composite built on old CRC: (a) using PCI, (b) using PCI-2

Figure 52. Deterioration of pavement condition by pavement age for AC Type 4-Interstate: (a) using PCI, (b) using PCI-2
Figure 53. Deterioration of pavement condition by pavement age for AC Type 4-Primary: (a) using PCI, (b) using PCI-2
5. SUMMARY AND RECOMMENDATIONS

The aim of this study was to establish a new system to assess and rate the condition of Iowa pavements. The Iowa PMIS database stores data relating to every aspect of pavement and data are updated annually. The Iowa DOT uses a Pavement Condition Index (PCI) as an overall rating of pavement condition. The current PCI is calculated using statistical regression equations that include variables differing for pavement families: the input may vary from traffic data to materials property.

In this study, a data set of 11,795 data points that include pavement sections from 1998 through 2012 was created.

Five individual indices on a scale of 100 were established based on the distress type with a Cracking Index, Riding Index, Rutting Index, Faulting Index, and Friction Index. The Cracking Index was formed combining the Transverse, Longitudinal, Wheel-path, and Alligator Cracking sub-indices, based on the pavement type.

The Cracking Index is composed of 60% transverse cracking and 40% longitudinal cracking for PCC pavements and, similarly, 20% transverse cracking, 10% longitudinal cracking, 30% wheel-path cracking, and 40% alligator cracking for AC surfaces. Furthermore, the Riding, Rutting, and Faulting indices utilize roughness, rut depth, and fault height, respectively. An overall pavement condition index, PCI-2, is established by combining individual indices with weight factors:

\[
\text{PCI-2}_{\text{PCC}} = 0.40 \times (\text{Cracking Index}) + 0.40 \times (\text{Riding Index}) + 0.20 \times (\text{Faulting Index}) \\
\]

\[
\text{PCI-2}_{\text{AC}} = 0.40 \times (\text{Cracking Index}) + 0.40 \times (\text{Riding Index}) + 0.20 \times (\text{Rutting Index}) \\
\]

The researchers compared PCI-2 results to PCI results and found that, in general, PCI-2 offers fairly good correlation to PCI condition results, particularly, for the pavement types where PCI utilizes distress and roughness data. The poorly related ones are due to the fact that some of the current PCI is heavily characterized by pavement age with various other data, such as material property and traffic and is characterized less than PCI-2 by the pavement distress and roughness data.

The information in the database was accepted as it is; so, there was no effort to improve the data quality, such as removing the outliers, and data screening for the new equation was kept to a minimum.

There are sections where the PCI and PCI-2 are in disagreement by more than 30 to 40 points. Similarly, there are very old sections showing extremely high PCI values and young ones with low values. These sections could be investigated further to improve data quality and, therefore, PCI-2.
Moreover, PCI-2 offers a dynamic model that can be further tweaked based on response from the field (such as modifying the weight factors for combination indices). Furthermore, PCI-2 is currently based on distress (cracking, rutting, faulting) and roughness and additional input such as patching and structural soundness could be added.
REFERENCES

REFERENCES FOR TABLE 3

Idaho Transportation Department. *Idaho Transportation System Pavement Performance Report*, Idaho Transportation Department, Division of Highways, Transportation System Section, Boise, ID, 2012.

Massachusetts Department of Transportation. *MassDOT Highway Division ScoreCard*, Massachusetts Department of Transportation, Highway Division, Boston, MA, 2011.

Nebraska Department of Roads. *State of Nebraska Pavement Management Systems*, Nebraska Department of Roads, Lincoln, NE, 2009.

