Design and Evaluation of a Single-Span Bridge Using UHPC

Several characteristics make UHPC a desirable construction material, including high strength, low permeability, and low life-cycle costs.

Objectives

• Develop a shear design procedure for ultra high-performance concrete (UHPC) bridge girders.
• Evaluate the structural performance of UHPC girders used in a Wapello County, Iowa, bridge to ensure the design's viability and verify design assumptions.
• Further define the material properties and understand the flexural behavior of UHPC bridge girders.

Problem Statement

UHPC is a relatively new construction material with several important advantages. Due to its low coarse aggregate content and the presence of steel or organic fibers, UHPC has higher compressive and tensile strengths than conventional concrete. The material can thus support greater loads, while UHPC's higher strength also allows for smaller and lighter structural components. The material's high density also makes it practically impermeable to water and chlorides and provides high durability.

Given these advantages, UHPC has the potential to improve bridge components. The first UHPC bridge in the United States was constructed in Wapello County, Iowa, during the fall of 2005. This bridge provides an opportunity, along with laboratory testing, to evaluate the design procedures for UHPC and more thoroughly define material properties and flexural behavior.
Research Description

Research included material testing, large-scale laboratory flexure testing, large-scale laboratory shear testing, large-scale laboratory flexure-shear testing, small-scale laboratory shear testing, and field testing of the Wapello County UHPC bridge.

Analytical models to understand the flexure and shear behavior of UHPC members were developed using iterative computer-based procedures. A shear design procedure that can be used in the design of UHPC members was developed based on the Modified Compression Field Theory (MCFT). The basic idea of the MCFT is to combine equilibrium, compatibility, and the materials’ constitutive properties into an analysis based on average strains and stresses.

Key Findings

- UHPC’s compressive strength depends on curing method; steam curing produced the highest strengths. Compressive strengths measured in this research were between 24 and 25 ksi; an assumed compressive strength of 28 ksi is not conservative.
- Tensile cracking strength depends on curing methods. The approximately -1.1 ksi tensile strength measured in this study agrees with previously published values.
- An analytical model using the strain compatibility approach correlated well with the large-scale flexure test results, and the test results verified that the service level and ultimate level flexural capacities are adequate for the Wapello County bridge.
- The MCFT approach can accurately determine the ultimate shear capacity of UHPC beams. The MCFT model correlated well with the large-scale shear test results up to the point of shear cracking and correlated well with the large-scale flexure-shear test results. The shear test also verified that the service level and ultimate level shear capacities are adequate for the Wapello County bridge.

Implementation Benefits

Several characteristics make UHPC a desirable construction material, including high strengths that can support greater loads and allow for smaller and lighter structural components. In addition, UHPC may prove to have lower life-cycle costs than other concretes.

Implementation Readiness

Live load testing conducted on the Wapello County bridge has confirmed the UHPC girder’s structural performance. Further research can help more fully define UHPC shear strength characteristics and help apply MCFT to UHPC. Additional investigation is also warranted to study the bond among prestressed strands in UHPC, which were observed to slip during this research.