OPTIMIZED GRADATION FOR CONCRETE PAVING MIXTURES

BEST PRACTICES WORKSHOP
Outline

- Concrete 101
- Optimized Gradation
 - Why should I care?
 - What is it?
- Historical Perspective
- Best Practices
- Conclusions
Concrete 101

• Portland Cement Concrete
 ➢ A hard strong building material made by mixing a cementing material (as portland cement) and a mineral aggregate (as sand and gravel) with sufficient water to cause the cement to set and bind the entire mass (Merriam-Webster.com).
Concrete 101

• Materials used in portland cement concrete (PCC)
 ➢ Hydraulic cement – reacts with water
Concrete 101

• Materials used in portland cement concrete (PCC)
 ➢ Supplementary cementitious materials
 ➢ Fly ash
 – Class C
 – Class F
 ➢ Slag cement
 ➢ Natural pozzolan
Concrete 101

- Materials used in portland cement concrete (PCC)
 - Admixtures
 - Air entrainers
 - Water reducers
 - Retarders
 - Accelerators

![Concrete Diagram](image)
Concrete 101

• Materials used in portland cement concrete (PCC)
 ➢ Water
Concrete 101

• Materials used in portland cement concrete (PCC)
 ➢ Aggregates – coarse and fine
 ➢ Can influence the following concrete properties:
 ➢ Durability
 ➢ Workability
 ➢ Dimensional changes
 ➢ Strength
Typical concrete proportions (non-optimized)
- 6.5 sacks of cementitious materials (611 lb/yd3)
- 6% air
- 0.45 water:cementitious materials ratio (275 lb/yd3)(33 gal)
- 60% coarse aggregate (1,800 lb/yd3)
- 40% fine aggregate (1,200 lb/yd3)
Concrete 101

- Typical concrete proportions (by volume) (non-optimized)

Diagram:
- Paste (35%)
 - Portland Cement (10%)
 - Fly Ash (3%)
 - Air (6%)
 - Water (16%)
- Mortar (61%)
 - Fine Aggregate (26%)
 - Coarse Aggregate (40%)
Concrete 101

- Quality measurements related to optimized gradation
 - Strength
 - Thickness
- Achieving average specified flexural strength is important for a given thickness

Concrete 101

- Quality measurements related to optimized gradation
 - Air content – freeze-thaw resistance
Concrete 101

• Quality measurements related to optimized gradation
 ➢ Permeability - the ease with which fluids can penetrate concrete

• Most durability damage is governed by permeability of the paste
 ➢ Optimize paste volume
 ➢ Use low w/cm
 ➢ Use SCMs
 ➢ Cure
 ➢ Minimize cracking
• What is it?
 ➢ Economically combining aggregate particles to achieve the desired objectives of:
 ➢ Appropriate workability
 ➢ Reduced paste content
 ➢ Required hardened properties
Optimized Gradation

• Why should I care?
 ➢ Durability – long life pavements have high quality and optimized paste contents, which is partially achieved through an optimized gradation approach
Optimized Gradation

• Why should I care?

• Paste quality
 ➢ Low permeability
 ➢ W/CM less than or equal to 0.42
 ➢ Use of SCMs
 ➢ Air entrained – Minimum of 5% behind the paver
Optimized Gradation

• Why should I care?
 ➢ Durability – long life pavements have high quality and optimized paste contents, which is partially achieved through an optimized gradation approach

• Paste quantity
 ➢ Low permeability
 ➢ Optimized gradation requires less paste for a given workability target
Optimized Gradation

• Why should I care?
 ➢ Workable mixture
 ➢ Responds to vibration without segregation
 ➢ Holds an edge
 ➢ Minimal surface voids
Optimized Gradation

• Why should I care?
 ➢ Smoothness
 ➢ Reduced hand finishing
 ➢ Stable edge
 ➢ Uniform response to vibration
Optimized Gradation

• Why should I care?
 ➢ Economics?
 ➢ Lowest material cost?
 – Cementitious content should be reduced, this can offset increased aggregate costs
 ➢ Reduced labor – finishing, re-work and grinding
 ➢ Life-cycle cost
Optimized Gradation

• Why should I care?
 ➢ Sustainability
 ➢ Reduced paste content (cement)
 ➢ Longer life
“We frankly doubt that concrete of the same 28-day strength made with modern materials will always perform as well (as concrete made 15 years ago).”

Powers, PCA SN 1099, 1934
Optimized Gradation – Historical Perspective

• 1960s interstate era – PCC was the predominant paving material
 ➢ Two aggregate system (coarse and fine) - for the most part, uniformly graded
 ➢ Mixed on grade
Optimized Gradation – Historical Perspective

• Post interstate era
 ➢ Intermediate particles (3/8” to #8) scalped for use in other products
 ➢ “Gap graded” mixtures were common
 ➢ Highly responsive to vibration
 ➢ Increased risk of segregation
 ➢ Increased risk of vibrator trails
 ➢ Slipform paving with high energy vibrators became common
Optimized Gradation – Historical Perspective

• Fast forward to late 1980s
 ➢ The PCC paving industry began listening to Jim Shilstone’s approach to combined gradation
 ➢ Coarseness and workability factor
 ➢ Percent retained
 ➢ 0.45 power chart
Optimized Gradation – Historical Perspective

• Coarseness and workability factors

Coarseness Factor = \(\frac{% \text{Retained Above 3/8" Sieve}}{% \text{Retained Above #8 Sieve}} \times 100 \)

Workability Factor = % Passing #8 (+2.5% for every 94 lb/yd\(^3\) over 564 lb/yd\(^3\))
Optimized Gradation – Historical Perspective

• Percent retained on individual sieves

![Theoretical "Haystack" Particle Distribution Graph]

- Combined Percent Retained
- Sieve Size:
 - 2½"
 - 2"
 - 1½"
 - 1"
 - ¾"
 - ½"
 - ¼"
 - #4
 - #8
 - #16
 - #30
 - #50
 - #100
 - #200

- Percent Retained:
 - 0%
 - 5%
 - 10%
 - 15%
 - 20%
 - 25%
 - 30%
Optimized Gradation – Historical Perspective

- 0.45 power chart
Optimized Gradation – Historical Perspective

• Shilstone’s approach has been an improvement, but …
 ➢ Focuses on 3/8” to #8
 ➢ Aimed at preventing segregation
 ➢ Lack of definitive rules for interpreting the graphical output
 ➢ Some mixtures that plot in zone 2 have still been problematic
Optimized Gradation – Best Practices

• The “Tarantula” curve, the latest development in optimized grading for slipformed concrete pavements
• Developed by Dr. Tyler Ley and others

Cook, Ghaeezadah, Ley
Optimized Gradation – Best Practices

• Remember the purpose of optimized gradation:
 ➢ Economically combining aggregate particles to achieve the desired objectives of:
 ➢ Reduced paste content
 ➢ Desired workability
 ➢ Required hardened properties
• The Tarantula curve was developed concurrently with a lab test that evaluates a concrete mixture’s response to vibration

Following slides from Tyler Ley, Oklahoma State University
Optimized Gradation – Best Practices

• Needed a test that is simple and can examine:
 ➢ Response to vibration
 ➢ Filling ability of the grout (avoid internal voids)
 ➢ Ability of the slip formed concrete to hold an edge (cohesiveness)
• The box test was born out of this need

Optimized Gradation – Best Practices

• Add 9.5” of unconsolidated concrete to the box
Optimized Gradation – Best Practices

• A 1” diameter stinger vibrator is inserted into the center of the box over a three count and then removed over a three count
Optimized Gradation – Best Practices

• The sides of the box are then removed and inspected for honey combing or edge slumping
Optimized Gradation – Best Practices

- Visual rating of surface voids and edge slumping
 - A rating of 3 or 4 is considered undesirable
 - Excessive edge slumping with any rating is considered undesirable
 - The box test evaluates the response of a concrete mixture to vibration and its ability to hold an edge
 - It has compared well with field performance

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rating</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voids</td>
<td>Over 50% overall surface voids.</td>
<td>30-50% overall surface voids.</td>
<td>10-30% overall surface voids.</td>
<td>Less than 10% overall surface voids.</td>
</tr>
</tbody>
</table>
Optimized Gradation – Best Practices

- Low amounts of water reducer indicate a good mixture
- High amounts indicate an undesirable combined gradation
- Quantify how WRA dosage demand varies with changes in the combined gradation

[Diagram]

1. Mix Concrete
 - Conduct: Slump and Box Test
 - Did it Pass the Box Test?
 - No
 - Put Material Tested Back into Mixer.
 - Add WR and Remix
 - Conduct: Slump and Box Test
 - Yes
 - Testing Complete
Optimized Gradation – Best Practices

- In the beginning, ...
 - Lab evaluation of multiple mixtures
 - Focused first on Zone II of the coarseness factor chart
Optimized Gradation – Best Practices

• Typical mixture used in the laboratory studies
 ➢ 0.45 w/cm
 ➢ 5 sacks total cementitious
 ➢ 20% fly ash
 ➢ Single sand source
 ➢ 3 crushed limestones
 ➢ Limestone A
 ➢ Limestone B
 ➢ Limestone C
Optimized Gradation – Best Practices

- Limestone A

![Graph showing sieve analysis with % Retained on the y-axis and Sieve No. on the x-axis. Key points highlighted: 17.1%, 12.7%, 16.1%, and 8.3 oz/cwt. WR dosage to pass the box test.]
Optimized Gradation – Best Practices

- Box test results vary significantly for mixtures that plot in the same area of the coarseness factor chart.
- The coarseness factor chart is not a reliable indicator of response to vibration and ability to hold an edge.
Optimized Gradation – Best Practices

- What about the Haystack?
- Box test results are no better than for a typical mixture
• Focus on the combined percent retained chart
Optimized Gradation – Best Practices

- Sieve limestone A to match the gradation of limestone C
- The percent retained on each sieve chart provides improved feedback over the coarseness factor chart
Optimized Gradation – Best Practices

• What about fine aggregate?
• And coarse aggregate?
Optimized Gradation – Best Practices

• Defining coarse sand (between the #4 and #30) and fine sand (finer than the #30)
• ACI 302.1R-04 recommends the sum of material retained on the #8 and #16 sieves should be a minimum of 13% to avoid edge slumping
Optimized Gradation – Best Practices

• Determine how fine aggregate gradation impacts the box test:
 ➢ Remove all coarse sand (#30 to #4)
 ➢ Test multiple mixtures
 ➢ All fine sand
 ➢ Multiple mixtures with slowly increasing amounts of coarse sand
Optimized Gradation – Best Practices

• Fine aggregate impacts
 ➢ #8 and #16 tend to cling to coarse aggregate particles, improving cohesion and stability of the mixture
 ➢ Reduced edge slumping
 ➢ Improved response to vibration
Optimized Gradation – Best Practices

• Given that coarse sand (#30 to #4) improves the mixture, how much is enough?
 ➢ A minimum of 15% cumulative retained on the #8-#30 sieve sizes is suggested
 ➢ The #8 and #16 should be limited to 12% to minimize finishing issues
Optimized Gradation – Best Practices

• Determine how fine aggregate gradation impacts the box test:
 ➢ Keep the ratio of coarse and fine sand constant
 ➢ Vary the gradation of the fine sand
Optimized Gradation – Best Practices

• Determine how fine aggregate gradation impacts the box test:
 ➢ Vary the fine sand (#30 to #200) while holding the #16 through 1” constant
Optimized Gradation – Best Practices

- Determine how fine aggregate gradation impacts the box test:
 - Vary the fine sand (#30 to #200) while holding the #16 through 1” constant
• Determine how fine aggregate gradation impacts the box test:
 ➤ Vary the fine sand (#30 to #200) while holding the #16 through 1” constant
Optimized Gradation – Best Practices

- Determine how fine aggregate gradation impacts the box test:
 - Vary the fine sand (#30 to #200) while holding the #16 through 1” constant
Optimized Gradation – Best Practices

• The distribution of fine sand can vary largely without affecting the workability.
• An aggregate volume between 24% to 34% is recommended for #30 - #200.
• This range was similar for multiple gradations and aggregate sources
• More than 20% retained on the #30 sieve size created finishing issues
Optimized Gradation – Best Practices

• The Tarantula curve

Excessive amount creates workability issues.

Creates surface finishability problems normally associated with manufactured sands.

Greater than 15% on the sum of #8, #16, and #30
24-34% of fine sand (#30-200)

Excessive amount that decreases workability and promotes segregation and edge slumping.

Not in Scope of work

Greater than 15% on the sum of #8, #16, and #30
24-34% of fine sand (#30-200)
• Tarantula Curve validation
 ➢ MNDOT implements a combined gradation specification in the late 1990s (incentive for Zone II) (data from Maria Masten)

1996-1998
• Tarantula Curve validation
 ➢ Through trial and error, contractors independently validated the Tarantula curve by honing in on mixtures that fit within the recommended limits (data from Maria Masten)
Optimized Gradation – Best Practices

- With added experience, the field mixtures continue to be refined and further reflect the Tarantula curve recommendations.
Concrete 101

- Typical concrete proportions (by volume)

Non-optimized mixture
- **Portland Cement**: 10%
- **Fly Ash**: 3%
- **Air**: 6%
- **Water**: 16%
- **Fine Aggregate**: 26%
- **Coarse Aggregate**: 40%

Optimized mixture
- **Portland Cement**: 7%
- **Fly Ash**: 2%
- **Air**: 6%
- **Water**: 11%
- **Combined Aggregate**: 74%
Aggregate System

- 50/50 – void ratio 27.1%
- Tarantula – void ratio 25.3%
Proposed Mixture Proportioning Procedure

Put it all together

<table>
<thead>
<tr>
<th></th>
<th>Tarantula</th>
<th>50/50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Void ratio</td>
<td>125</td>
<td>150</td>
</tr>
<tr>
<td>Cementitious</td>
<td>427</td>
<td>505</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>424</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>175</td>
<td>543</td>
</tr>
</tbody>
</table>

[Graph showing V Kelly against Vp/Vv, with two lines representing different mixture proportions: G1.0 50 and G1.0 Tarantula.]
Optimized Gradation – Best Practices

• Strength will not be adversely affected
 ➢ 338 lb/yd3 of portland cement
 ➢ 85 lb/yd3 of fly ash

• Still have to do trial batches

<table>
<thead>
<tr>
<th>Source</th>
<th>7 Day Strength</th>
<th>28 Day Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min-Max (psi)</td>
<td>Average (psi)</td>
</tr>
<tr>
<td>Limestone A</td>
<td>4000-6320</td>
<td>5180</td>
</tr>
<tr>
<td>Limestone B</td>
<td>4990-5270</td>
<td>5130</td>
</tr>
<tr>
<td>River Rock</td>
<td>3990-4850</td>
<td>4440</td>
</tr>
</tbody>
</table>
Optimized Gradation – Best Practices

• Putting optimized gradation into practice
 ➢ Specifications
 ➢ Aggregate grading – modify as needed to allow use of the Tarantula curve
 ➢ Control paste volume
 – Cementitious content
 – Maximum w/cm = 0.42
Optimized Gradation – Best Practices

- Putting this into practice
 - Plant production
 - Stockpile management – minimize segregation
 - Aggregate stockpile moisture content
 - Multiple aggregate bins
 - Thorough mixing
Optimized Gradation – Best Practices

• Conclusions
 ➢ Optimized gradation is one tool helping to produce durable concrete
 ➢ Reduced paste content
 ➢ Improved workability
 ➢ The box test evaluates a mixture's response to vibration and ability to hold an edge
 ➢ The Tarantula curve was developed in parallel with the box test
 ➢ The Tarantula curve has been independently validated by contractors who have been developing optimized mixtures since the late 1990s
Questions and Discussion