Materials-Related Distress

BEST PRACTICES WORKSHOP

U.S. Department of Transportation
Federal Highway Administration

National Concrete Pavement Technology Center

Iowa State University Institute for Transportation
Outline

• Why are we here
 ➢ 42
Introduction

- Concrete pavements are inherently durable, having a history of exceptional long-term performance.
- In some instances, pavement service life has been adversely affected by the concrete’s inability to maintain its integrity in the environment in which it was placed.
- These distress manifestations are categorized as materials-related distress (MRD).
What is Materials-Related Distress?

• MRD is commonly associated with the “durability” of the concrete

• Durability is not an intrinsic material property

 ➢ Concrete that is durable in one application may rapidly deteriorate if placed in another application

 ➢ “Durability” can not be measured directly. Potential durability can be inferred

• It is not related to loading, although loading can exacerbate the distress
MRD Manifestations

- Fine pattern cracking
 - Isolated to joints or over entire surface
 - Progressive in nature, getting worse over time
- Degradation such as spalling or scaling
- Often accompanied by staining and/or exudate
- Evidence of expansion is also common with some types of MRD
Are These MRDs?
How About These?
And This?
What About This One?
How About Here?
Important Considerations

• The concrete constituents, proportions, and construction all influence MRD

• Water is needed for deleterious expansion to occur

• Severe environments (e.g. freezing and thawing, deicer applications, high sulfate soils, etc.) are major contributors

• Strength does not equal durability
Materials Basics - Hardened Cement Paste (HCP)

- Combination of cement, supplementary cementitious materials (SCMs), water, and admixtures to form hydration products and entrained air
 - HCP provides cohesion to the concrete mixture
 - Comprised (primarily) of calcium silicate hydrate (CSH) and calcium hydroxide (CH)
 - CSH - provides strength and is desirable
 - CH - provides little strength and plays a role in many MRD mechanisms
 - CH is soluble in water; solubility maximum at 0 °C (32 °F)
 - Pozzolans (e.g., fly ash) consume CH and yield CSH
Materials Basics - Aggregates

- Natural gravel, quarried rock, and sand, or manufactured mineral filler (e.g., air-cooled blast furnace slag and manufactured sand)
 - 65–80% volume of the concrete
 - Less expensive than components of the HCP
 - Provide the load-carrying capacity of concrete
 - Provide dimensional stability
 - Generally considered inert but not always the case
 - Aggregate quality significantly impacts concrete quality
 - Local sources used (shipping considerations) so poor quality is often accepted but needs to be mitigated
Mechanisms of MRD Common in Pavements

• **Physical Mechanisms**
 - Freeze-thaw deterioration of hardened cement paste
 - Deicer scaling/deterioration
 - Freeze-thaw deterioration of aggregate

• **Chemical Mechanisms**
 - Alkali-aggregate reactivity
 - Alkali-silica and alkali-carbonate reactivity
 - Sulfate attack
 - External and internal sulfate attack
 - Corrosion of embedded steel
Freeze-Thaw Deterioration of Hardened Cement Paste

• Overview

- Deterioration of saturated HCP due to repeated freeze-thaw cycles
- Manifests as scaling, spalling, or map cracking
- Typically appears within 1 to 5 years after construction
- Prevented through the use of air entraining admixtures which create a protective air-void system
Freeze-Thaw Deterioration of Hardened Cement Paste

• Mechanism

- Results when the HCP becomes “critically saturated” and concrete undergoes F-T cycles
- The expansion of ice causes tensile forces that crack concrete

![Graph showing the relationship between degree of saturation and resistance to frost](image)

There is a critical saturation that makes concrete susceptible to repeated F-T.
Freeze-Thaw Deterioration of Hardened Cement Paste

• Prevention

 ➢ Entrained air-void system
 ➢ Delays the time to critical saturation
 ➢ Provides space for ice formation
 ➢ Allows for water movement (minimizing hydraulic pressure)
 ➢ Volume and spacing of voids critical

Partially Saturated Capillary and Gel Pores

Critically Saturated Capillary and Gel Pores

When \(d \) exceeds some critical distance, water in the capillary and gel pores cannot travel to an air void and freeze, resulting in hydraulic pressure and cracking.
Air-Void System
Air-Void System

• Testing

➤ The air-void system can be evaluated using various tests

➤ ASTM C231 - Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method

➤ ASTM C173 - Standard Test Method for Air Content of Freshly Mixed Concrete by the Volumetric Method

➤ ASTM C138 - Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete

➤ ASTM C457 - Standard Test Method for Microscopical Determination of Parameters of the Air-Void System in Hardened Concrete

➤ AASHTO TP 118 - Characterization of the Air-Void System of Freshly Mixed Concrete by the Sequential Pressure Method
Air-Void System

• Testing

- ASTM C231 (pressure meter), ASTM C173 (roller meter), and ASTM C138 (unit weight bucket) all measure **ONLY** the air content (A)

- Air content is the volumetric air content, typically 4 – 8 % volume by specification

- For QC purposes it is sufficient to measure the volume of air

- To fully establish F-T durability other air-void system (such as spacing factor) parameters are more important
Air-Void System

- F-T durability requires adequate air void system

 ► Spacing Factor (\bar{L}):

 ► Approximates the constant distance from the surface of each air void surface, which would encompass some large fraction of the paste

 ► Maximum: less than 0.2 mm (0.008 in.) (ACI 201)

 ► Specific Surface (α):

 ► Surface-to-Volume Ratio

 ► Defines the surface area associated with a unit volume of void space – smaller voids (i.e., more voids per unit volume) result in a higher specific surface

 ► Minimum: 24 mm2/mm3 (600 in.2/in.3)

 ► Air Content (A)

 ► Measured on hardened & fresh concrete

 ► L and α assumed proportional to A in fresh concrete

Air-Void System

• Testing

➢ To measure spacing factor, specific surface, and other air-void system parameters, it is necessary to analyze hardened concrete using ASTM C457

➢ Requires special equipment and skilled operator (petrographer)

➢ Because only hardened concrete can be analyzed, can only be used as a QA tool

➢ AASHTO TP 118 (SAM meter) is an emerging technique that measures a combined parameter (SAM number) on fresh concrete that correlates to F-T performance in a manner similar to ASTM C457
Air-Void System Analysis – ASTM C457
Air-Void System

• Testing

 ➢ Measurement of F-T performance of a concrete mixture is measured using ASTM C666 Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing

 ➢ Measures the loss in dynamic modulus after undergoing up to 300 cycles of freezing (either in air or water) and thawing (in water)

 ➢ Test is severe and does not always correlate with field performance, but serves as a mixture screening test

 ➢ Performed as part of mixture design, not as part of a QC/QA program (typically)
Deicer Scaling
Deicer Scaling/Deterioration

• Overview

- Deicer chemicals can amplify paste freeze-thaw deterioration and may also chemically react with or degrade hydrated paste constituents

- Manifests as scaling, spalling, or map cracking with possible staining near joints

- Typically appears within 1 to 5 years after construction

- Prevented through the use of air entraining admixtures and a relatively low water-to-cement ratio

- Minimize finishing, which can reduce air content at surface
Deicer Scaling/Deterioration

• Mechanism

- Not well understood

- Current research indicates scaling is due to tensile forces developed in the surface layer of concrete due to expansion of the ice layer†

- The expansive forces of the ice are at a maximum when the solution freezing on the surface contains ~3% dissolved salt, and the type of salt is not a factor†

- Often seen when the concrete is over finished, working the air out of the surface layer

Impact of Poor Finishing

0.5 to 1 inch
Deicer Scaling/Deterioration

• Prevention

➢ Do not over finish

➢ Good air-void system to begin with

➢ Avoid salts – especially at early ages (i.e., one year or less)

➢ Proper curing

➢ Penetrating sealers to reduce water ingress
Deicer Scaling/Deterioration

• Testing

- Scaling performance of a concrete mixture is measured using ASTM C672 Standard Test Method for Scaling Resistance of Concrete Surfaces Exposed to Deicing Chemicals

- Assesses (by visual inspection only) the loss of material from the concrete surface after ponding dilute salt solution on the surface and exposing the samples to 50 cycles of F-T

- Test is widely criticized for its subjectivity; modifications include measuring the mass loss from the sample

- Test very susceptible to how specimens are finished
F-T Deterioration of Aggregate (D-cracking)

• Overview

- Caused by the fracturing or dilation of coarse aggregate under freeze-thaw cycling in a saturated state
- Manifests as cracking and staining parallel to joints and cracks that may eventually spall
- Commonly manifests within 10 to 15 years
- Prevented through the use of non-susceptible aggregates or reduction in the top size of the coarse aggregate
F-T Deterioration of Aggregate

- **Mechanism**

 - Aggregates are porous and absorb water

 - The rate of water absorption and the rate of water expulsion is a function of the pore size distribution of the aggregates

 - D-cracking aggregates have a pore size distribution that does not allow for rapid expulsion of water as a freezing front moves through an aggregate

 - The resulting hydrostatic pressure forces can exceed the tensile strength of the aggregate
F-T Deterioration of Aggregate

• Prevention

 ➢ Avoid the use of susceptible aggregates

 ➢ D-cracking aggregates are best identified by experience

 ➢ When it is necessary to use susceptible aggregates, limit the aggregate top size

 ➢ A smaller aggregate particle diameter allows for more rapid expulsion of absorbed water
F-T Deterioration of Aggregate

• Testing

 ➢ Iowa Pore Index Test (IPIT)

 ➢ Measures the amount of water absorbed by aggregates under pressure (241 kPa, 35 psi) in a prescribed time
 − Water absorbed 0–1 minutes µ macropores (Primary Load)
 − Water absorbed 1–15 minutes µ micropores (Secondary Load)
 − Secondary Load > 27 mL is associated with D-racking susceptible aggregates

 ➢ IPIT results are more representative of the parent rock because of the large sample volume used (9000 g)

 ➢ Variable/erroneous results for aggregates with rapid rates of early absorption

 ➢ No discernible trends in the results from gravels
F-T Deterioration of Aggregate

• Testing

➤ Washington Hydraulic Fracture

➤ Measures the amount of particle fracture that occurs after pressurizing aggregate (7930 kPa, 1150 psi) submerged in water

 – Start with n particles retained on a 12.5 mm (1/2 inch) sieve. After 10 cycles of pressure and release, report the increase in the number of particles retained on a #4 sieve as a percentage of n (percent fracture)

 – From these measurements determine the number of pressurization cycles required to create a percent fracture of 10% - low values indicate more D-cracking susceptibility

➤ Can identify aggregates likely to fail due to hydraulic pressures

➤ Does not simulate the confining effect of the HCP

➤ Cannot identify aggregates that cause cracking due to excessive water expelled from aggregates
Alkali–Silica Reactivity
Alkali–Silica Reactivity

• Overview

- Caused by a reaction between alkalis in the paste pore solution and reactive silica in aggregate that forms expansive reaction product

- Manifests as map cracking over the entire slab area. Exudate is common, as is expansion related distress

- Commonly occurs within 5 to 15 years

- Prevented through the use of non-susceptible aggregates, limiting total mixture alkalinity, and addition of pozzolans
Alkali–Silica Reactivity

• Mechanism

- In the presence of pore solution (i.e., H$_2$O, Na$^+$, K$^+$, Ca$^{2+}$, OH$^-$, and H$_3$SiO$_4^-$ ions), reactive silica undergoes depolymerization, dissolution, and swelling.

- Depends on pH of the solution, not on alkalis per se, although they control the pH.

- The higher the pH, the more soluble the silica.

- Attack is more aggressive when the silica is not crystalline (i.e., amorphous or crypto-crystalline) as in cherts or opaline shales.
Alkali–Silica Reactivity

• Mechanism

 ➢ Silicon and oxygen prefer to combine in “tetrahedral coordination”

 ➢ Four (4) oxygens surround each silicon – open surface structure

† Amir C. Akhavan, The Quartz Page.
www.quartzpage.de/gen_struct.html
Alkali–Silica Reactivity

- Charged surface attracts ions due to unsatisfied bonds
Alkali–Silica Reactivity

- Charged surface attracts H^+ and OH^- ions from alkali pore water
Alkali–Silica Reactivity

- With alkalis in pore water, Na\(^+\) substitutes for H\(^+\)
Alkali–Silica Reactivity

• If any excess alkalis still exist, the associated hydroxyl (OH-) breaks the Si-O-Si bond and free an oxygen
Alkali–Silica Reactivity

- Hydrogen dissociates from OH\(^{-}\), combines with O\(^{2-}\) to form water. Na\(^{+}\) substitutes for H\(^{+}\) and the attack has progressed.
Alkali–Silica Reactivity

• \(\text{Si-O-Si} + 2\text{OH}^- + 2\text{Na}^+ \rightarrow 2(\text{Si-O-Na}) + \text{H}_2\text{O} \)
Alkali–Silica Reactivity

- **Prevention**
 - Avoid use of reactive aggregates
 - Limit alkalis in the concrete mixture

- **Mitigation**
 - Use of SCMs
 - Fly Ash
 - Slag Cement
 - Use of Lithium
Alkali–Silica Reactivity

• Guidance

 ➢ ASTM C1778 - *Standard Guide for Reducing the Risk of Deleterious Alkali-Aggregate Reaction in Concrete*

 ➢ AASHTO PP-65 - *Standard Practice for Determining the Reactivity of Concrete Aggregates and Selecting Appropriate Measures for Preventing Deleterious Expansion in New Concrete Construction*

 ➢ Performance Approach
 – Demonstrate performance (ASTM C1260 and ASTM C1293)

 ➢ Prescriptive Approach
 – Limit the alkali content of the concrete mixture
 – Mitigate with SCMs
Alkali–Silica Reactivity

• Testing

➤ Various Screening Methods

➤ ASTM C295 - Standard Guide for Petrographic Examination of Aggregates for Concrete

➤ ASTM C1293 - Standard Test Method for Determination of Length Change of Concrete Due to Alkali-Silica Reaction
Alkali–Silica Reactivity

• Testing

➢ ASTM C295

➢ Outlines procedures for the petrographic examination of materials proposed for use as aggregates in cementitious mixtures or as raw materials for use in production of aggregates

➢ Can identify, and approximate the quantity of, potentially ASR reactive aggregates

➢ Useful way to screen potential sources

➢ If an aggregate is identified as potentially reactive by petrography, expansion testing is still required to identify if the aggregate exhibits deleterious ASR or to identify mitigation strategies
Alkali–Silica Reactivity

• Testing

➢ ASTM C1260

➢ Used to detect the potential for deleterious alkali-silica reaction of aggregate in mortar bars

➢ Samples are exposed to NaOH solution for 14 days (cement alkali content not a factor) and expansion measured

➢ Accepted expansion limit (0.1 at 14 days) chosen empirically to correlate with an ASTM C1293 expansion of 0.04

➢ Performing the test with modifications (e.g., exposure time other than 14 days, expansion limit other than 0.1 - or any other changes – undermines the validity of the test
Alkali–Silica Reactivity

- Testing
 - ASTM C1567
 - Used to detect the potential for deleterious alkali-silica reaction of combinations of cementitious materials and aggregate in mortar bars
 - Samples are exposed to NaOH solution for 14 days and expansion measured
 - Accepted expansion limit (0.1 at 14 days) chosen empirically to correlate with an ASTM C1293 expansion of 0.04
 - Mitigation of expansion can be evaluated by the test, but the actual SCM replacement level required must be confirmed by ASTM C1293 or field experience
Alkali–Silica Reactivity

• Testing

- ASTM C1293
 - Estimates the susceptibility of an aggregate, or combination of an aggregate with pozzolan or slag, for participation in expansive ASR by measurement of length change of concrete prisms
 - Samples are spiked with alkali to create any possible ASR and expansion is monitored for 1 – 2 years, depending on the test intent - accepted expansion limit (0.04 at 1 year)
 - Pozzolan replacement levels established by ASTM C1293 should be treated as the minimum required
 - The “gold standard” of ASR testing – not without incorrect results but the best test available
 - Concerns with the test include alkali leaching from the specimens over time
Alkali-Carbonate Reactivity

• Overview

- Caused by a reaction between alkalis in the paste pore solution and specific carbonate/dolomitic aggregates that undergo dedolomitization and brucite formation

- Manifests as map cracking over entire slab area with accompanying expansion related distress

- Commonly manifests in 5 to 15 years

- Only sure prevention is to avoid susceptible aggregates, although blending and sizing aggregates and/or significantly reducing total alkalinity may be effective

- Mitigation is not possible
Alkali-Carbonate Reactivity

• Mechanism

Dedolomitization

\[
\text{CaMg(CO}_3\text{)}_2 + 2(\text{Na,K})\text{OH} \rightarrow \text{Mg(OH)}_2 + \text{CaCO}_3 + (\text{Na,K})\text{CO}_3
\]

- Dolomite
- Alkali Hydroxide
- Brucite
- Calcite
- Alkali Carbonate

Recycle Alkalis – leads to carbonate halos

\[
\text{Na(K)}_2\text{CO}_3 + \text{Ca(OH)}_2 \rightarrow \text{CaCO}_3 + 2\text{Na(K)}\text{OH}
\]

- Alkali Carbonate
- CH
- Calcite
- Alkali Hydroxide

Recycling of alkalis makes mitigation ineffective
Alkali-Carbonate Reactivity

- **Mechanism – Possible Reasons For Expansion**
 - Swelling of clay minerals in dolomite
 - Dedolomitization increases permeability, more water ingress, possible swelling
 - Crystal growth in dolomite matrix
 - Brucite formation
 - Increased alkalis leading to ASR
 - Microcrystalline silica is present in many aggregates reported to be ACR susceptible
 - **IMPORTANT**: Requires a specific dolomite rock type – *Only a very slight fraction of dolomite rocks are ACR reactive – specific geologic deposits/locations (i.e., argillaceous dolomitic limestone, fine grained matrix with dolomite crystals embedded)*

- **Prevention – Avoid ACR susceptible aggregates**
Alkali-Carbonate Reactivity

- Testing – Reject aggregates based on chemistry
Alkali-Carbonate Reactivity

• Testing

- ASTM C586 Standard Test Method for Potential Alkali Reactivity of Carbonate Rocks as Concrete Aggregates (Rock-Cylinder Method)
 - Used to screen rock materials for potential ACR reactivity

- ASTM C1105 Standard Test Method for Length Change of Concrete Due to Alkali-Carbonate Rock Reaction
 - Determines the susceptibility of cement-aggregate combinations to expansive alkali-carbonate reaction for certain calcitic dolomites and dolomitic limestones

- Aggregates passing ASTM C1105 should be evaluated for ASR potential using ASTM C1260 or C1293, as appropriate
External Sulfate Attack

• Overview

- Expansive formation of sulfate minerals resulting from an external source of sulfate ions
- Fine cracking and deterioration near joints and slab edges and on underside of slab
- Usually manifests within 1 to 5 years
- Mitigated through the use of low w/c, minimizing aluminate phases in cementitious materials, or using pozzolans or ground slag
External Sulfate Attack

• Mechanism

➢ Sulfate-laden solution enters concrete

➢ Sulfate reacts with alumina and calcia to form ettringite

 ➢ Monosulfate – normally present in HCP is converted to ettringite

 ➢ Ettringite can form in HCP or at the HCP-aggregate interface

➢ Conversion to ettringite results in volume increase – expansion – and cracking

➢ Ettringite that forms in air voids does not exert expansive pressures but may compromise the air-void system
External Sulfate Attack

• Mechanism – Example Reactions

Symbols Used

\(\bar{S} = \text{sulfate ion} \ (\text{SO}_4^{2-}) \)

\(\text{CH} = \text{calcium hydroxide} \ \left(\text{Ca(OH)}_2\right) \)

\(\text{AFm} = \text{monosulfate} \ \left(3\text{CaO} \ ± \text{Al}_2\text{O}_3 \ ± \text{CaSO}_4 \ ± 12\text{H}_2\text{O}\right) \)

\(\text{AFt} = \text{ettringite} \ \left(3\text{CaO} \ ± \text{Al}_2\text{O}_3 \ ± 3\text{CaSO}_4 \ ± 32\text{H}_2\text{O}\right) \)

Ettringite Formation with Calcium Hydroxide Dissolution

\[
4(\text{Na,K})^+ + 2\bar{S} + 2\text{CH} + \text{AFm} \rightarrow 4(\text{Na,K})^+ + \text{AFt} + 4\text{OH}
\]
External Sulfate Attack

- Mechanism – Example Reactions

Symbols Used

\(\bar{S} \) = sulfate ion \((SO_4^{2-})\)

\(CH \) = calcium hydroxide \((Ca(OH)_2)\)

\(CS \) = calcium sulfate, gypsum \((CaSO_4 \cdot 2H_2O)\)

Gypsum Formation with Calcium Hydroxide Dissolution

\((Na,K)^+ + \bar{S} + CH \rightarrow 4(Na,K)^+ + CS + 4OH\)
External Sulfate Attack

• Mechanism – Example Reactions

Symbols Used

\(\bar{S} = \text{sulfate ion (SO}_4^{2-}) \)

\(\text{CSH} = \text{calcium silicate hydrate (1.7Ca\text{SiO}_2 \cdot 4H_2O)} \)

\(\text{CSH}_D = \text{decalcified calcium silicate hydrate (<1.7Ca\text{SiO}_2 \cdot 4H_2O)} \)

\(\text{AFm} = \text{monosulfate (3CaO\cdotAl}_2\text{O}_3 \cdot Ca\text{SO}_4 \cdot 12H_2O)} \)

\(\text{AFt} = \text{ettringite (3CaO\cdotAl}_2\text{O}_3 \cdot 3Ca\text{SO}_4 \cdot 32H_2O)} \)

Decalcification of CSH Due To Ettringite Formation

\(n\text{CSH} + \text{AFm} + 4(Na,K)^+ + 2\bar{S} \rightarrow n\text{CSH}_D + \text{AFt} + 4(Na,K)^+ + 4OH^- \)
External Sulfate Attack

• Mechanism – Example Reactions

Symbols Used

\(\bar{S} = \text{sulfate ion (SO}_4^{2-} \) \\
CSH = \text{calcium silicate hydrate (1.7CaSiO}_2 \cdot 4H_2O) \\
CSH_D = \text{decalcified calcium silicate hydrate (<1.7CaSiO}_2 \cdot 4H_2O) \\
C\bar{S} = \text{calcium sulfate, gypsum (CaSO}_4 \cdot 2H_2O) \\

Decalcification of CSH Due To Gypsum Formation

\[
n\text{CSH} + 2(\text{Na, K})^+ + \bar{S} \rightarrow n\text{CSH}_D + C\bar{S} + 2(\text{Na, K})^+ + 2\text{OH}^{-}
\]
External Sulfate Attack

• Prevention

➢ Reduce concrete permeability

➢ Lower w/c – see ACI 201.2R-08 Guide to Durable Concrete for guidance on w/c determination based on sulfate exposure

➢ Use pozzolans or slag to densify the CSH and reduce the available CH for reaction – see ACI 201.2R-08 Guide to Durable Concrete for guidance on replacement level

➢ Reduce aluminate phases in cementitious materials that can react

➢ Use ASTM C150 Type II or Type V cement and limit aluminate phases in SCMs – see ACI 201.2R-08 Guide to Durable Concrete for guidance on cement selection based on exposure class and SCM composition
Internal Sulfate Attack

• Overview

➢ Expansive formation of ettringite in paste due to an internal source of sulfates

➢ Most commonly associated with high curing temperatures (delayed ettringite formation)

➢ Can also be associated with an internal source of sulfates (e.g. aggregate, fly ash, etc.)

➢ Fine cracking concentrated at joints but may effect entire slab area

➢ Usually manifests in 1 to 5 years

➢ Prevented by controlling internal sources of sulfate and avoiding high curing temperatures
Internal Sulfate Attack

• Mechanism

➢ Internal attack is most commonly associated with steam cured concrete

➢ If concrete is cured at temperatures above 70-80 °C (158-176 °F) the formation of ettringite during the initial set is “delayed” and monosulfate is formed

➢ The monosulfate later converts to ettringite after the concrete hardens resulting in expansion and cracking

➢ Other forms of internal sulfate attack involve sources of sulfate from the constituent materials leading to the same reactions observed with external sources of sulfate
Internal Sulfate Attack

• Prevention

➢ Fortunately not a distress associated with cast in place concrete

➢ For steam cured concrete observe proper curing temperatures

➢ For all concrete limit sulfate contents in constituent materials

 ➢ Portland cement is typically sulfate balanced and not an issue

 ➢ SCMs and aggregates can be likely sources of sulfate

 ➢ Problems with sulfide-bearing aggregates have been reported

 – Pyrrhotite \([\text{Fe}_{(1-x)}\text{S} \ (x = 0 \text{ to } 0.2)]\) weathering/oxidizing to provide sulfate internally
Sulfate Attack

• Testing

➢ Internal sulfate attack can be addressed by monitoring the chemical composition of the concrete materials

➢ ASTM C1012 Standard Test Method for Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution

➢ Used to evaluate combinations of materials for susceptibility from external sulfate attack by monitoring the length change of mortar bars immersed in a sulfate solution

➢ Test duration a minimum of twelve (12) months, or eighteen (18) months in the case of ACI 201 defined Class 3 exposure

➢ Test exhibits considerable variation
Corrosion of Embedded Steel

• Overview

- Associated most often with chloride ingress, which destroys passivity film protecting steel
- Appears as cracking and spalling above and around embedded steel
- Rust staining
- Commonly manifests in 3 to 10 years
- Prevented by providing adequate concrete cover, reducing concrete permeability, protecting steel, or using corrosion inhibitors
Corrosion of Embedded Steel
Corrosion of Embedded Steel

- **Mechanism**
 - At the anode iron is oxidized and combines with OH\(^{-}\) to form corrosion product.
 - At the cathode electrons, oxygen, and water combine to form OH\(^{-}\).
 - Both reactions must occur simultaneously.

\[
\begin{align*}
\text{Anode} & : \quad \text{Fe} \rightarrow \text{Fe}^{2+} \\
\text{Cathode} & : \quad \text{electrons} \rightarrow \text{OH}^{-} \\
\text{ions (OH}^{-}) & : \quad \text{O}_2 + \text{H}_2\text{O} \\
\end{align*}
\]
Corrosion of Embedded Steel

• Mechanism

- Under normal conditions the high pH of the concrete creates a corrosion layer on the steel that protects it from corrosion – passivation layer.

- Passivation layer blocks the diffusion of water and oxygen to the steel and the cathode reaction is shut down, stopping the overall corrosion reaction.
Corrosion of Embedded Steel

• Mechanism

- Carbon dioxide (CO$_2$) lowers the pH of the concrete and the passivation layer breaks down
- Chloride (Cl$^-$) attacks the passivation layer directly – mechanism unclear
- Limiting fluid ingress (CO$_2$, O$_2$, Cl$^-$, and H$_2$O) limits corrosion

\[
\begin{align*}
\text{Anode} & : \text{Fe} \rightarrow \text{Fe}^{2+} \\
\text{Cathode} & : \text{O}_2 + 2\text{H}_2\text{O} + 4\text{e}^- \rightarrow 4\text{OH}^- \\
\end{align*}
\]
Corrosion of Embedded Steel

• Prevention

- Provide adequate cover (concrete) over steel to reduce/slow the ingress of fluids
- Reduce concrete permeability (low w/c, penetrating sealers)
- Use corrosion inhibiting chemicals in the concrete to counteract the effects of chlorides or CO$_2$
- Minimize cracking in the concrete cover
Final Thoughts

- Many manifestations of MRD look similar, and therefore identification **cannot** be made based on visual assessment alone.

- Water is necessary for deleterious expansion to occur.

- Severe environments (freezing and thawing, deicers, sulfates, etc.) exacerbate the problem.

- Durable materials are typically low shrinkage and relatively impermeable.