National Concrete Pavement Technology Center

Sustainable Concrete Pavement Technologies

Concrete Overlays Helping to Address the Nations Preservation/Rehabilitation Needs

Mid Continent Research Symposium

Ames, Iowa
August 20-21, 2009
Nations Transportation Needs

- Thousands of miles of 30, 40, 50, year-old pavements are still in service
- 1/3 of the Nation’s 4 million miles are in poor condition
- Poor roadway conditions cost US motorist $54 billion per year in vehicle repair and operating costs
- To address the roadway problems require $65-100 billion per year for several years
- Current revenue supplies less than $40 billion per year
Fix now or pay a lot more later
Value of US Highway System $1.75 Trillion

Pavement Condition Rating (PCR)

Each $1.00 spent at PCR 60-100

Costs $4.80 to $7.00 at PCR 50-60
Costs $20.00 at PCR 40-50
Costs $48.00 at PCR 0-40

Years (age)

40% 75% 40% 12%
What If?

• New or improved sustainable technologies could solve some of these challenges

• Country’s 1.3 million miles of deteriorated pavements rehabilitated quickly and sustainably at a fraction of the cost of reconstruction

• Agencies could extend the return on their original investment by taking advantage of the equity remaining in deteriorated pavements

• Pavement structural capacity could be enhanced to meet the demands of the ever increasing traffic volumes (240% increase 1965 to 2005)

• Get in, get out, and stay out – construction is a major source of traffic delays
We Know There Are Solutions

- Concrete overlays reuses the existing pavement.
- As long as existing pavement remains stable and uniform a concrete overlay can be placed, replaced or recycled as needed.
- Where pavement needs to carry heavy loads a thin bonded overlay creates a thicker monolithic section.
- If pavement is deteriorating a thicker unbonded overlay acts like a new pavement with the old pavement as a base.
- Concrete overlays reuses the existing pavement.
- Life cycle costs are some of the best.
Why Concrete Overlays?

- Consistently provide cost-effective solutions
- Constructed quickly and conveniently
- Few preoverlay repairs are necessary
- Placed using normal concrete pavement construction practices
- Can be opened to traffic within a short time using standard mixes
- Easy to repair
- Cost-effective maintenance tool and valuable rehabilitation tool
- Can serve as complete preventive maintenance or rehabilitation solutions or can be used in conjunction with spot repairs of isolated distresses
Minor Rehabilitation - Thin Overlays (2”-4”)

- Minor Rehabilitation involves the application of thin overlays to existing pavements.
- The thickness of the overlays ranges from 2” to 4”.
- The process is shown in the image with workers applying a new layer of pavement.
Major Rehabilitation

Major Rehabilitation
Structural Concrete Overlays (>4”)

[Image of construction site with vehicles and workers]
Across the Country, Most States Have Used at Least One Type of Concrete Overlay

- To rehabilitate aging pavements

- Been in service for decades in many locations

- Experience has shown that well designed and constructed concrete overlays provide excellent performance
States with Concrete Overlay Experience

- With concrete overlay experience (mainly overlays on asphalt)
- With no known concrete overlay experience
Why are we not using Concrete Resurfacing Technology more?

Perception:

• Pavement design theories for bonded and unbonded overlays (resurfacing) are difficult to understand

• There is lack of confidence in overlays because of lack of understanding on how they work

• They are not perceived to be fast track construction like HMA

• They are expensive to remove and replace
CP Technology Center Advisory Board (Spring 2006)

• Develop a user friendly “go to” manual with training to provide the user with a simple, but educated choice.

• Form partnerships between states to share experiences and knowledge and there needs to be assistance provided to those states.

• There needs to be one single comprehensive document
Concrete Overlays Program

<table>
<thead>
<tr>
<th>Program</th>
<th>Products</th>
<th>Schedule</th>
<th>Funding</th>
</tr>
</thead>
</table>
| **Part 1**
• Clarify Terminology
• Additional topics | 2006-2008 | CP Tech Center |
| **Part 2**
One to six hour presentations throughout the country | 30 Power point presentations and workshops | 2007-2010 | CP Tech Center/FHWA APTP |
| **Part 3**
Field Application Program
Expert teams completes field review for evaluation, and helps with design, specs, pre construction issues. |
• 10 state projects
• Technical Assistance
• Lessons learned
• Lessons shared | 2008-2010 | FHWA/ISU Cooperative Agreement |
| **Part 4**
IHRB/FHWA Field Research Program |
• Field research on early opening, traffic control, interlayer, string-less paving | 2009-2010 | FHWA/ISU Cooperative Agreement |
| **Part 5**
Design Guide for Concrete Overlays | Design Guide to be developed for bonded and unbonded overlays with examples of current programs | 2009-2011 | FHWA/ISU Cooperative Agreement |
Concrete Overlay Guide second edition

Contents

1. Overview of Overlay Families
2. Overlay types and uses
3. Evaluations & Selections
4. Six Overlay Summaries (11”x17 “sheets)
5. Design Section
6. Miscellaneous Design Details
7. Overlay Materials Section
8. Work Zones under Traffic
9. Key Points for Overlay Construction
10. Accelerated Construction
11. Specification Considerations
12. Repairs of Overlays
Family of Concrete Overlays

- Bonded Overlay Family
 - Bonded Concrete Overlay of Concrete Pavements
 - Bonded Concrete Overlay of Asphalt Pavements
 - Bonded Concrete Overlay of Composite Pavements

- Unbonded Overlay Family
 - Unbonded Concrete Overlay of Concrete Pavements
 - Unbonded Concrete Overlay of Asphalt Pavements
 - Unbonded Concrete Overlay of Composite Pavements

Bond is integral to design
Old pavement is base
The real challenge is identifying the right treatment at the right time.
The overall objective of the program is to increase the awareness, knowledge and strengthen confidence in concrete overlay applications among state DOTs, cities, counties, contractors, and engineering consultants.
Expert Team

Experts on concrete overlays will provide informational assistance to each participating state.

- Conduct initial field site review
- Walk through the evaluation process
- Walk through the design phase
- Attend pre-pour, pre-bid or pre-construction conference
- Attend during construction & may use mobile lab
Technical Working Group (TWG) Meetings

- Exchange of lessons learned between participating State DOT’s
- Held first TWG conference call May 18, 2009 with nine states participating
 - Review uses & benefits
 - States share evaluation criteria and overlay selection process
 - States share their issues, solutions and lessons learned
 - Suggestions on update of Overlay Guide
 - Overall information sharing among states
Concrete Material and Pavement Testing
Mobile Laboratory

• With the concurrence of each State DOT, the CP Tech Center’s Mobile Concrete Lab will be on-site during construction of the overlay demonstration projects

• Will perform comprehensive concrete testing (for each type of overlay) as well as offer technical support to the State DOT.
Concrete Overlay
Field Application States

Joined the Program
1. Delaware
2. Louisiana
3. Maryland
4. Nevada
5. New Mexico
6. North Dakota
7. Pennsylvania
8. South Dakota
9. Texas
10. Washington
11. West Virginia

Interested States
1. Arkansas
2. California
3. Georgia
4. Kentucky
5. Maine
6. Minnesota
7. Nebraska
8. North Carolina
9. Virginia

5 States – 6” Bonded Overlays over HMA (6’x6’ joints)
3 States – 6” Unbonded Overlays over Concrete (6’x6’ joints)
1 State – 7” Bonded CRCP over Plain Jointed Concrete

Iowa – 2009-2010
Field Application Research Projects
Overlay Program Impacts

<table>
<thead>
<tr>
<th>State</th>
<th>Route</th>
<th>Length</th>
<th>Overlay</th>
<th>Sq. Yds.</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Dakota</td>
<td>Hwy 11</td>
<td>8 miles</td>
<td>5” Bonded</td>
<td>77,500</td>
</tr>
<tr>
<td>New York Port Authority</td>
<td>JFK Airport</td>
<td></td>
<td>18” Unbonded</td>
<td>323,822</td>
</tr>
<tr>
<td>Minnesota</td>
<td>8 State Routes</td>
<td></td>
<td>Varies from 5” to 10”</td>
<td>1,305,000</td>
</tr>
<tr>
<td>South Dakota</td>
<td>Vermillion Airport</td>
<td></td>
<td>7” Unbonded</td>
<td>34,000</td>
</tr>
<tr>
<td>South Dakota</td>
<td>SD 50</td>
<td>2.5 miles</td>
<td>7” Unbonded</td>
<td>40,000</td>
</tr>
<tr>
<td>Michigan</td>
<td>6 City Projects</td>
<td></td>
<td>4” Unbonded</td>
<td>205,000</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>1,985,322</td>
</tr>
</tbody>
</table>
There is a need to improve upon the construction techniques for the construction overlays to meet the public needs for mobility and access.

Tested ways of project development, site preparation, construction methods and traffic control work well for thick overlays and closed road construction.

New methods are needed in each area to meet the needs of the public we serve.
The research elements are:

• Establish profile grades & machine control before or immediately after letting

• Determine ways to guide longitudinal joint forming operation to match the underlying joint alignment

• Determine the appropriate opening strength for depths of concrete of 6 inches or less

• Determine ways of handling traffic control for construction of single lane overlays as part of a two lane or multilane overlay

• Determine the best way to establish the level of need and timing of milling for existing asphalt surface preparation

• Minimizing pavement train width

• Use of innovative materials, such as geotextile layers, for use as bond separator layers
The AASHTO Guide and many of the other procedures have been in existence for over two decades due to the lack of data on the interaction between the underlying pavement, interlayer, and concrete overlay, a conservative design approach is often taken, which results in suboptimal costs. Design programs are not always user friendly. Programs take a significant amount of input.
Guide for Existing Concrete Overlay Design Methodology

- What is needed is straightforward and simple guidance for concrete overlay design
- More specifically, guidance is needed in how to use the AASHTO and other design procedures that are most commonly used today
- Proper use of computer software
- With guidance, DOT’s can rest assured that their concrete overlay designs are based on sound engineering fundamentals, and validated by field performance
THANK YOU!

Dale S. Harrington
Representing the National Concrete Pavement Technology Center
dharrington@snyder-associates.com
515-964-2020