Report of the
Workshop on Intelligent Compaction for Soils and HMA

April 2–4, 2008

David J. White, Ph.D.
Associate Professor of Civil Engineering
Earthworks Engineering Research Center Director
2711 South Loop Drive, Suite 4700
Ames, Iowa 50010
515-294-1892
djwhite@iastate.edu

Sponsored by the Iowa Department of Transportation
and the Earthworks Engineering Research Center at Iowa State University
Table of Contents

Preface .. vii
Acknowledgments ... ix
Abbreviations ... xi
Executive Summary ... xiii
Introduction ... 1
 The Challenge ... 1
 IC Workshop Vision ... 1
 Background ... 1
 Intelligent Compaction ... 1
 Mechanistic Based In Situ Testing for QC/QA ... 3
 Data Visualization and Management .. 6
 Specifications .. 7
 Current Intelligent Compaction Research Projects ... 7
Presentations .. 9
 Intelligent Compaction for Soils and Aggregate—David White 11
 Intelligent Compaction (IC) for Hot Mix Asphalt (HMA)—Lee Gallivan 23
 Automated Technologies in Construction—Dan Street ... 31
 Earthworks Engineering Research Center—David White .. 35
 Intelligent Compaction at Mn/DOT—Glenn Engstrom, Craig Collison, Art Bolland 37
 European Experience with ICS—François Chaignon .. 47
 Intelligent Compaction for Soil and Asphalt—Dean Potts ... 55
 Asphalt Manager, Intelligent Compaction—Chris Connolly .. 59
 Intelligent Compaction for Soils and HMA—Stan Rakowski 71
 Evaluation of the Highway Subgrade Strength with the Acceleration Wave of the Vibration Roller—Stan Rakowski ... 79
 Intelligent Compaction: GPS-based Compaction Control—Kirby Carpenter 83
 Intelligent Compaction—Khalil Maalouf .. 89
 Intelligent Compaction: Where we are at and where we need to be—Brett Stanton 91
Breakout Sessions ... 99
 IC for Soils and Aggregate 1—Heath Gieselman (Facilitator), Pavana Vennapusa (Recorder) ... 99
 Knowledge Gaps .. 99
 Equipment Advancements ... 99
Educational/Technology Transfer .. 99
Standards/Specifications and Guidelines .. 100
General .. 100
IC for Soils and Aggregate 2—Ed Engle (Facilitator), John Puls (Recorder) ... 100
 Knowledge Gaps ... 100
 Equipment Advancements .. 101
 Educational/Technology Transfer .. 101
 Standards/Specifications and Guidelines .. 102
 General .. 102
IC for Soils and Aggregate 3—Ed Engle (Facilitator), Pavana Vennapusa (Recorder) ... 102
 Knowledge Gaps ... 102
 Equipment Advancements .. 103
 Educational/Technology Transfer .. 103
 Standards/Specifications and Guidelines .. 104
IC for HMA 1—Tom Cackler (Facilitator), David White (Recorder) 104
 Knowledge Gaps ... 104
 Equipment Advancements .. 105
 Educational/Technology Transfer .. 105
 Standards/Specifications and Guidelines .. 105
 General .. 106
IC for HMA 2—Lisa Rold (Facilitator), Paul Wiegand (Recorder) 109
 Educational/Technology Transfer .. 109
 General .. 109
IC for HMA 3—Tom Cackler (Facilitator), David White (Recorder) 111
 Knowledge Gaps ... 111
 Equipment Advancements .. 111
 Educational/Technology Transfer .. 111
 Standards/Specifications and Guidelines .. 111
 General .. 112
IC for HMA 4—Lisa Rold (Facilitator), Paul Wiegand (Recorder) 113
 Knowledge Gaps ... 113
 Educational/Technology Transfer .. 113
 General .. 113
Implementation Strategies 1—Douglas Townes (Facilitator), John Puls (Recorder) 114
 Knowledge Gaps ... 114
 Equipment Advancements .. 115
 Educational/Technology Transfer .. 115
 Standards/Specifications and Guidelines .. 115
 General .. 116
Implementation Strategies 2—Heath Gieselman (Facilitator), Jerod Gross (Recorder) 116
 Knowledge Gaps ... 116
 Equipment Advancements .. 117
 Educational/Technology Transfer .. 117
 Standards/Specifications and Guidelines .. 117
Facilitator Report—Summary

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC for Soils and Aggregate</td>
<td>118</td>
</tr>
<tr>
<td>Knowledge Gaps</td>
<td>118</td>
</tr>
<tr>
<td>Equipment Advancements</td>
<td>118</td>
</tr>
<tr>
<td>Educational/Technology Transfer</td>
<td>118</td>
</tr>
<tr>
<td>Standards/Specifications and Guidelines</td>
<td>119</td>
</tr>
<tr>
<td>IC for HMA</td>
<td>119</td>
</tr>
<tr>
<td>Knowledge Gaps</td>
<td>119</td>
</tr>
<tr>
<td>Equipment Advancements</td>
<td>119</td>
</tr>
<tr>
<td>Educational/Technology Transfer</td>
<td>120</td>
</tr>
<tr>
<td>Standards/Specifications and Guidelines</td>
<td>120</td>
</tr>
<tr>
<td>Implementation Strategies</td>
<td>120</td>
</tr>
<tr>
<td>Knowledge Gaps</td>
<td>120</td>
</tr>
<tr>
<td>Equipment Advancements</td>
<td>120</td>
</tr>
<tr>
<td>Educational/Technology Transfer</td>
<td>121</td>
</tr>
<tr>
<td>Standards/Specifications and Guidelines</td>
<td>121</td>
</tr>
<tr>
<td>Panel Discussion</td>
<td>122</td>
</tr>
<tr>
<td>Reaction to Breakout Sessions</td>
<td>122</td>
</tr>
<tr>
<td>New Perspectives</td>
<td>122</td>
</tr>
<tr>
<td>Specifications</td>
<td>122</td>
</tr>
<tr>
<td>Technology Development</td>
<td>123</td>
</tr>
<tr>
<td>Group Exercise to Identify Implementation Strategies</td>
<td>124</td>
</tr>
<tr>
<td>Contractor Perspective</td>
<td>124</td>
</tr>
<tr>
<td>Manufacturer Perspective</td>
<td>124</td>
</tr>
<tr>
<td>State Agency Perspective</td>
<td>125</td>
</tr>
<tr>
<td>Outcomes</td>
<td>126</td>
</tr>
<tr>
<td>Next Steps</td>
<td>127</td>
</tr>
<tr>
<td>Appendices</td>
<td>130</td>
</tr>
<tr>
<td>Appendix A: Workshop Agenda</td>
<td>130</td>
</tr>
<tr>
<td>Appendix B: Workshop Attendees</td>
<td>132</td>
</tr>
</tbody>
</table>
Preface

This document summarizes the discussion and findings of a workshop on intelligent compaction for soils and hot-mix asphalt held in West Des Moines, Iowa, on April 2–4, 2008. The objective of the meeting was to provide a collaborative exchange of ideas for developing research initiatives that accelerate implementation of intelligent compaction (IC) technologies for soil, aggregates, and hot mix asphalt. Technical presentations, working breakout sessions, a panel discussion, and a group implementation strategy session comprised the workshop activities. About 100 attendees representing state departments of transportation, Federal Highway Administration, contractors, equipment manufacturers, and researchers participated in the workshop.
Acknowledgments

The Earthworks Engineering Research Center (EERC) at Iowa State University of Science and Technology (ISU) gratefully acknowledges the Iowa Department of Transportation (Iowa DOT) for its sponsorship of this workshop. Travel support for most state DOT participants and support for the development of this report were made possible by the Iowa DOT.

The EERC also sincerely thanks the following individuals for their support of this workshop:

Planning Committee

Sandra Larson (Chair), Iowa Department of Transportation
John Adam, Iowa Department of Transportation
Tom Cackler, National Concrete Pavement Technology Center, Iowa State University
Carol Culver, Iowa Department of Transportation
Mark Dunn, Iowa Department of Transportation
Ed Engle, Iowa Department of Transportation
Heath Gieselman, Earthworks Engineering Research Center, Iowa State University
Max Grogg, Federal Highway Administration
Greg Kinser, Des Moines Asphalt
Mike Kvach, Asphalt Paving Association of Iowa
Kent Nicholson, Iowa Department of Transportation
Sharon Prochnow, National Concrete Pavement Technology Center, Iowa State University
Lisa Rold, Federal Highway Administration
John Smythe, Iowa Department of Transportation
David White, Earthworks Engineering Research Center, Iowa State University

Workshop Presenters and Panel Discussion Participants

Art Bolland, Minnesota Department of Transportation
Kirby Carpenter, Texana Machinery
François Chaigou, COLAS
Chris Connolly, Bomag Americas
Glenn Engstrom, Minnesota Department of Transportation
Lee Gallivan, Federal Highway Administration
Khalil Maalouf, Volvo Construction Equipment
Dwayne McAninch, McAninch Corp.
Dean Potts, Caterpillar Global Paving
Stan Rakowski, Sakai America
Brett Stanton, Payne & Dolan, Inc.
Dan Street, New York State Department of Transportation
David White, Earthworks Engineering Research Center, Iowa State University
Breakout Session Facilitators and Recorders

Tom Cackler, National Concrete Pavement Technology Center, Iowa State University
Heath Gieselman, Earthworks Engineering Research Center, Iowa State University
Jerod Gross, Snyder & Associates
John Puls, Iowa State University
Lisa Rold, Federal Highway Administration
Douglas Townes, Federal Highway Administration
Pavana Vennapusa, Iowa State University
David White, Earthworks Engineering Research Center
Paul Wiegand, National Concrete Pavement Technology Center, Iowa State University

Workshop Moderators

Sandra Larson, Iowa Department of Transportation
Max Grogg, Federal Highway Administration
Mike Kvach, Asphalt Paving Association of Iowa
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_d</td>
<td>dry unit weight</td>
</tr>
<tr>
<td>AMG</td>
<td>automated machine guidance</td>
</tr>
<tr>
<td>CBR</td>
<td>California bearing ratio</td>
</tr>
<tr>
<td>CCV</td>
<td>Sakai compaction control value; Caterpillar compaction value</td>
</tr>
<tr>
<td>CIV</td>
<td>Clegg impact value</td>
</tr>
<tr>
<td>CMV</td>
<td>compaction meter value</td>
</tr>
<tr>
<td>DCP</td>
<td>dynamic cone penetrometer</td>
</tr>
<tr>
<td>DOT</td>
<td>Department of Transportation</td>
</tr>
<tr>
<td>DTM</td>
<td>digital terrain model</td>
</tr>
<tr>
<td>EED</td>
<td>electronic engineering data</td>
</tr>
<tr>
<td>E_{LWD}</td>
<td>light weight deflectometer elastic modulus</td>
</tr>
<tr>
<td>E_{PTT}</td>
<td>plate load test elastic modulus</td>
</tr>
<tr>
<td>E_{SSG}</td>
<td>soil stiffness gauge elastic modulus</td>
</tr>
<tr>
<td>E_{vrb}</td>
<td>BOMAG roller vibration modulus</td>
</tr>
<tr>
<td>FHWA</td>
<td>Federal Highway Administration</td>
</tr>
<tr>
<td>FWD</td>
<td>falling weight deflectometer</td>
</tr>
<tr>
<td>GPS</td>
<td>global positioning system</td>
</tr>
<tr>
<td>HMA</td>
<td>hot mix asphalt</td>
</tr>
<tr>
<td>IC</td>
<td>intelligent compaction</td>
</tr>
<tr>
<td>K</td>
<td>hydraulic conductivity</td>
</tr>
<tr>
<td>K_s</td>
<td>case/ammann roller stiffness</td>
</tr>
<tr>
<td>LWD</td>
<td>light weight deflectometer</td>
</tr>
<tr>
<td>MDP</td>
<td>Caterpillar machine drive power</td>
</tr>
<tr>
<td>RMV</td>
<td>resonant meter values</td>
</tr>
<tr>
<td>TDM</td>
<td>theoretical maximum density</td>
</tr>
</tbody>
</table>
Executive Summary

The objective of this workshop was to provide a collaborative exchange of ideas for developing research and educational initiatives that accelerate implementation of Intelligent Compaction (IC) technologies for soils, aggregates, and hot mix asphalt that will lead to conclusive and measurable improvements within five years. Several key strategies were identified and are documented in this report. Technical presentation slides, notes from the working breakout sessions, a summary of the panel discussion, and a summary of the group implementation strategy session are reported herein. A road map for implementation that identifies several key research and training focal areas is summarized at the end of this report.

Following several technical presentations, nine breakout sessions were conducted covering three topic areas: “IC for Soils and Aggregate,” “IC for HMA,” and “Implementation Strategies.” Each group was asked to address their topic around the following questions:

• What are the existing knowledge gaps?
• What equipment advancements are needed?
• What educational/technology transfer needs exist?
• What standards/specifications and guidelines need to be developed?

Based on a detailed review of the results from this session, there were two levels of analysis of the results: (1) prioritized results for each topic area, and (2) a cross-cutting top 10 list of key research needs. The top 10 research needs are summarized in Table 2 from the report, replicated below.

Table 2. Summary of main IC technology research needs

<table>
<thead>
<tr>
<th>Top 10 IC Technology Research Needs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Correlation studies (cohesive, stabilized, granular, HMA, etc.) (136)</td>
</tr>
<tr>
<td>2. Education/training materials and programs (112)</td>
</tr>
<tr>
<td>3. Moisture content (influence + measurement) (61)</td>
</tr>
<tr>
<td>4. Integrated design + real-time data transfer (57)</td>
</tr>
<tr>
<td>5. Case histories + demos + benefit + successes (48)</td>
</tr>
<tr>
<td>6. Engineering parameter to measure (density, modulus, stiffness, core mat temperature) (47)</td>
</tr>
<tr>
<td>7. Addressing non-uniformity (34)</td>
</tr>
<tr>
<td>8. Establishing QC/QA framework - statistically significant (28)</td>
</tr>
<tr>
<td>9. Measurement influence depth (19)</td>
</tr>
<tr>
<td>10. Promoting good geotechnical practices (13)</td>
</tr>
</tbody>
</table>
A panel discussion was carried out to reflect on the outcomes determined from the breakout sessions and what was learned from the workshop that may have changed perspectives on IC technology. The discussion points were divided into four categories:

- Reaction to breakout sessions
- New perspectives
- Specifications
- Technology developments

Each of these categories was summarized and condensed to four common themes. These themes are summarized in Table 3 of the report, which is replicated below.

Table 3. Summary of common themes from panel discussion

<table>
<thead>
<tr>
<th>Common Themes from Panel Discussion Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. High level of interest from the state DOTs in further studying opportunities to implement IC.</td>
</tr>
<tr>
<td>2. Implementation strategies need to build on existing information and past research.</td>
</tr>
<tr>
<td>3. Specifications for IC and in situ testing should not restrict manufacturer/equipment developer innovations.</td>
</tr>
<tr>
<td>4. Contractor and state DOT field personnel and engineers need educational materials for IC and in situ QC/QA testing.</td>
</tr>
</tbody>
</table>

Following the panel discussion, the audience was given instructions to break up into groups to further brainstorm implementation strategies. A list of the three common strategies was derived from this exercise. The common strategies are summarized in Table 4 of the report, shown here.

Table 4. Summary of common themes from the group implementation strategy session

<table>
<thead>
<tr>
<th>Common Themes from Group Implementation Strategy Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Develop IC training and certification program.</td>
</tr>
<tr>
<td>2. Demonstrate benefits of IC through demonstration projects.</td>
</tr>
<tr>
<td>3. Promote partnership as key strategy to implementation.</td>
</tr>
</tbody>
</table>

At the conclusion of the workshop a discussion centered on understanding where we are and where we are going as a lead-in to developing a road map for implementation of IC technologies. Key points from the discussion are summarized in Table 5 of the report, shown on the following page.

To move from the current practice and knowledge base, several key strategies were considered and are listed in Table 6 of the report, shown on the following page.
Where we are:

- Lack widely accepted IC specifications in U.S.
- Need education/training materials
- Innovative IC and in situ testing equipment
- IC technologies provide documented benefits (smooth drum - granular)
- Great potential and some limited successes for cohesive and HMA
- Poor database development for IC projects and case histories
- Human IC network initiated
- Increasing acceptance/GPS infrastructure for stakeless grading/machine guidance
- “Don’t know what we don’t know”

Where we are going:

- Standardized and credible IC specifications inclusive of various IC measurement systems
- Widespread implementation of IC technologies
- High quality database of correlations
- Several documented successes for cohesive/stabilized/granular/HMA
- Better understanding of roadway performance - what are key parameters?
- Innovative new sensor systems and intelligent solutions
- Integrated and compatible 3D electronic plans with improved processes, efficiency and performance
- Real-time wireless data sharing
- Enhanced archival and visualization software
- Improved analytical models of machine-ground interactions

Table 5. Summary of key points

<table>
<thead>
<tr>
<th>Strategies for Moving Forward</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participate in partnerships for IC research and information exchange regionally and nationally</td>
</tr>
<tr>
<td>Be an advocate for IC implementation</td>
</tr>
<tr>
<td>Contribute to problem statement development for NCHRP, TRB, FHWA, AASHTO, ASCE Committees</td>
</tr>
<tr>
<td>Participate in IC conferences/studies and the annual EERC Workshop</td>
</tr>
<tr>
<td>Participate on EERC Scientific and Policy Advisory Council (35 members) – IC and other issues</td>
</tr>
<tr>
<td>Stay connected: Subscribe to EERC Technical Bulletins, Tech Transfer Summaries, Technical Reports, Educational Videos, etc. (www.intelligentcompaction.com).</td>
</tr>
<tr>
<td>Develop a comprehensive and strategic IC road map for research and educational/technology transfer</td>
</tr>
</tbody>
</table>

Table 6. Strategies for moving forward

Results from the workshop provided significant information to outline the road map which can serve as a starting point for further discussions and assessment. Additional steps beyond peer reviewing the research/educational elements of the road map will be required to create an integrated research management plan, establish a schedule, and identify organizations, contractors, and equipment manufacturers that want to partner and leverage funding/equipment and human resources to move the program forward.
Introduction

The Challenge

When it comes to addressing the nation’s infrastructure construction challenges, investment in new research and innovative technologies, changing policy and creating educational programs, and developing sustainable and environmentally-friendly practices are needed1, 2, 3. Although it lacks headline grabbing drama, improvements to earthwork operations and technologies potentially offer a significant return on investment. This is because whether it’s highways, levees/dams, railways, airfields, underground tunnels, waterways, etc. all civil infrastructure projects are composed of, or supported by, soil and rock—the world’s most abundant construction material. Unfortunately, many of the current problems with highway systems are attributed to unstable and non-uniform ground conditions. Intelligent compaction (IC) is one technology that could address compaction and non-uniformity problems for earth materials and hot mix asphalt (HMA). Roller-integrated global position system (GPS) documentation capabilities (i.e. mapping) provide new opportunities for providing 100 percent coverage information and documenting non-uniformity of compacted materials. To date, only a few research/demonstration projects have been completed, and no widely accepted specifications are available for the United States. To benefit from IC technologies, a comprehensive and strategic plan for research and educational/technology transfer activities is needed.

IC Workshop Vision

The objective of the IC workshop was to provide a collaborative exchange of ideas for developing research and educational initiatives that accelerate implementation of IC technologies for soil, aggregates, and hot mix asphalt that will lead to conclusive and measureable improvements within five years. Several key strategies were identified and are documented in this report. Technical presentation slides, notes from the working breakout sessions, a summary of the panel discussion, and a summary of the group implementation strategy session are reported herein. A road map for implementation that identifies several key research and training focal areas is summarized at the end of this report. As a lead-in, a brief review of intelligent compaction technologies, specifications, and in situ testing is described.

Background

Intelligent Compaction

IC technologies consist of machine-integrated sensors and control systems that provide a record of machine-ground interaction. With feedback control and adjustment of vibration amplitude and/or frequency and/or speed during the compaction process, the technology is referred to as intelligent compaction. Without the vibration feedback control system the technology is commonly referred to as continuous compaction control (CCC).

1 Geological and Geotechnical Engineering in the New Millennium: Opportunities for Research and Technological Innovation (2006). By National Research Council (U.S.), National Research Council.

3 Report Card for America’s Infrastructure (http://www.asce.org/reportcard/2005/index.cfm)
The machine-ground interaction measurements provide an indication of ground stiffness/ strength and to some extent degree of compaction. Most of the IC/CCC technologies are vibratory-based systems applied to single drum self-propelled smooth drum rollers. IC/CCC technologies have also been applied to vibratory double drum asphalt compactors and self-propelled padfoot compactors. CCC vibratory roller systems have been used in Europe for more than 20 years. During this period the technologies have evolved to include a variety of different measurement techniques and GPS-based documentation systems. Most of the research documented in the literature deals with CCC applications for granular materials. More recently, non-vibratory (static) rollers have been outfitted with machine-integrated systems that provide measurement values based on machine drive power. This approach is being developed primarily for use in non-granular materials. Other IC measurements systems are also in development, and it is expected that these technologies will continue to improve and find applications to a wider range of earth materials and field conditions.

There are at least six IC/CCC systems/parameters: omega value, compaction meter value (CMV), stiffness (k_s), vibration modulus (E_{vib}), compaction control value (CCV), and machine drive power (MDP). The measurement parameters are well defined in the literature. Figure 1 shows several of the manufacturer smooth drum vibratory compactors for soils and corresponding data visualization and management software displays.

![Figure 1. Smooth drum compaction monitoring systems for soil and aggregate.](image-url)

Transportation agencies and contractors are beginning to investigate applications for the IC/CCC technologies as part of field demonstrations and a limited number of projects for which the technology has been specified. Expectations are that the IC/CCC systems will (1) improve construction efficiency, (2) streamline quality management programs of earthwork and asphalt projects, (3) better link quality acceptance parameters and documentation with pavement design, and (4) improve the performance of compacted materials.

Mechanistic Based In Situ Testing for QC/QA

Traditional quality control and assurance (QC/QA) programs are typically fulfilled by performing in situ tests that provide information about the state or performance of the compacted materials. Soil dry density and moisture content are the most common measurements for acceptance for earth materials. Similarly, core samples and nuclear density testing are the predominant field quality assurance tests for hot mix asphalt. IC/CCC measurement values can be empirically related to density but generally requires an independent measure of moisture content and multiple regression analysis, particularly for cohesive soils. In situ measurements of mechanistic parameters (e.g., elastic modulus, strength, etc.) are now being considered with growing interest as an alternative to traditional moisture/density control. One advantage of linking IC/CCC measurement values to mechanistic parameters is that it provides a link to performance-based specifications and input/verification for mechanistic pavement design.

Relationships between IC/CCC measurement values and in situ compaction measurements are influenced by operating conditions of the compactors (e.g., roller size, vibration amplitude and frequency, and velocity) and material conditions (e.g., soil type, moisture content, lift thickness, underlying layer stiffness, asphalt temperature). Recent studies have demonstrated empirical relationships, and limitations thereof, between the various IC/CCC measurements values and conventional in situ spot test measurements for soil materials.

Because the relationships are influenced by roller operations, soil type, and stratigraphy underlying the soil being compacted, several factors should be considered during calibration. Figure 2 shows a simple example comparing IC measurement values to various in situ spot test measurements. Regression coefficient values (r) range from 0.5 to 0.9, indicating fair to good correlations. Improvements to these correlations are expected with improved understanding of the measurement influence depth of the rollers and various in situ testing devices. Figure 3 illustrates differences between measurement influence depths for rollers and various in situ spot test measurements. One of the challenges with correlating in situ spot test measurements with IC measurement values is that the roller measurements values are an average or integrated value over the width of the drum up to depths equal to one meter and greater.

With the implementation of IC/CCC technologies, several new in situ compaction measurement devices have been developed and investigated. Figure 4 shows many of the in situ measurement devices that are being evaluated as an alternative to traditional density testing. Several recent research reports provide comparison measurements between the new devices and conventional measurements. However, very little has been done to link the IC measurement values analytically to in situ test measurements or to develop statistically reliable sampling and analysis plans.

Measuring soil density and moisture content, albeit relatively laborious and time-consuming using traditional techniques, provides information that can be easily understood and related to laboratory test results. But while density and moisture content are broadly accepted measures of compaction, the physical properties are not necessarily direct measures of performance. Some of the emerging testing technologies now focus on measurement of the in situ mechanistic properties of soil, namely strength and modulus, such as the dynamic cone penetrometer.

Figure 2. Relationships between k_s and in situ compaction measurements—subgrade material.
(DCP), the Clegg impact tester, the soil stiffness gauge (SSG), the light weight deflectometer (LWD), dirt seismic pavement analyzer (D-SPA), etc. These tools are now being studied and in a few cases implemented into quality control and assurance programs with particular emphasis on characterizing pavement layers and subgrade for mechanistic-empirical (M-E) pavement design.

Figure 3. Measurement influence depth comparison for rollers and in situ test devices.

Figure 4. Various in situ compaction equipment for field QC/QA.
Data Visualization and Management

IC/CCC technology provides the opportunity to collect and evaluate information for 100 percent of the project area, but it can also produce large data files that create analysis, visualization, transfer, and archival challenges. Thus, approaches for managing the data need to be developed. IC measurement values referenced to GPS coordinates are spatially referenced, which can be useful for targeting QA testing and signaling to the contractor where additional rolling or rework is needed. Figure 5 shows an example data set for visualization and analysis for CMV data overlaid with in situ measurement values. This approach has the advantage of linking IC and in situ test measurements with electronic plans.\(^\text{18}\)

IC data output files have various formats that include *.xls, *.txt, *.csv, and *.dbf file types. Memory required for data storage will vary with the file type. For a section with plan dimensions of approximately 250 meters by 10 meters with compaction performed in five roller lanes, the memory required for single point data (assigned to one location across the drum) is approximately one to two megabytes for *.xls, *.txt, *.csv, and *.dbf file formats. The total memory required for creating a geodatabase for a project might be on the order of one to two gigabits.

Univariate statistics (e.g. mean and standard deviation) of IC measurement values alone do not characterize the spatial variability and specifically do not address the issue of uniformity from a spatial viewpoint19. Two data sets with identical distributions of the data (having similar mean, standard deviation, etc.), can have significantly different spatial characteristics. This issue has not been addressed adequately in current specifications and will require new research to investigate the impact of non-uniformity on pavement performance.

Specifications

Specifications developed for use of CCC generally provide requirements on the equipment size, requirements for documentation of the machine sensor measurements and GPS mapping, machine operations (including speed and amplitude), and quality control compaction requirements. Table 1 lists some of the key attributes for specifications identified in the literature9.

Current Intelligent Compaction Research Projects

Currently, there are two national studies underway to evaluate vibration-based IC and CCC systems—National Cooperative Highway Research Program (NCHRP) 21-09 and FHWA IC pooled fund study 954.

The NCHRP Study has the objectives of determining the reliability of intelligent compaction systems and to developing recommended construction specifications for the application of intelligent compaction systems in soils and aggregate base materials.

The FWHA study includes evaluation of asphalt rollers in addition to soil and aggregate. The emphasis of this study is centered on accelerating the development of IC QC/QA specifications, developing an experienced and knowledgeable IC expertise base within the participating DOTs, and identifying needed improvements and research for IC equipment and QC/QA field-testing equipment. A website has been established for this project (www.intelligentcompaction.com/).

In addition to these national level studies, a few states have conducted demonstration projects. Minnesota DOT (Mn/DOT) has implemented IC on several projects recently and has a detailed website dedicated to intelligent compaction (www.dot.state.mn.us/materials/researchic.html).

Table 1. Summary of intelligent compaction specifications

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Field size</th>
<th>Location Specs</th>
<th>Documentation</th>
<th>Compaction Specs</th>
<th>Speed</th>
<th>Freq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn/DOT (2006 TH 64)*</td>
<td>Smooth drum or padfoot vibratory roller (25,000 lbs.)</td>
<td>300 ft x 32 ft (mini-mum at base). Max 4 ft. thick.</td>
<td>One calibration/control strip or source of grading material</td>
<td>90% of the stiffness measurements must be at 90% of the compaction target value.</td>
<td>Same during calibration and production compaction</td>
<td></td>
</tr>
<tr>
<td>ISSMGE</td>
<td>Roller chosen by experience</td>
<td>100 m by the width of the site</td>
<td>Rolling pattern, sequence of compaction and measuring passes; amplitude, speed, dynamic measuring values, frequency, jump operation, and corresponding locations</td>
<td>Correlation coefficient ≥ 0.7. Minimum value ≥ 95% of Ev1, and mean should be ≥ 105% (or ≥ 100% during jump mode). Dynamic measuring values should be lower than the specified minimum for ≤ 10% of the track. Measured minimum should be ≥ 80% of the specified minimum. Standard deviation (of the mean) must be ≤ 20% in one pass.</td>
<td>Constant 2–6 km/h (± 0.2 km/h)</td>
<td>Constant (± 2 Hz)</td>
</tr>
<tr>
<td>Earthworks (Austria)</td>
<td>Vibrating roller compactors with rubber wheels and smooth drums suggested</td>
<td>100 m long by the width of the site</td>
<td>No inhomogeneities close to surface (materials or water content). Track overlap ≤ 10% drum width.</td>
<td>Compaction run plan, sequence of compaction and measurement runs, velocity, amplitude, frequency, speed, dynamic measuring values, jump operation, and corresponding locations</td>
<td>Correlation coefficient ≥ 0.7. Minimum value ≥ 95% of Ev1, and median should be ≥ 105% (or ≥ 100% during jump mode). Dynamic measuring values should be lower than the specified minimum for ≤ 10% of the track. Measured minimum should be ≥ 80% of the set minimum. Measured maximum in a run cannot exceed the set maximum (150% of the determined minimum). Standard deviation (of the mean) must be ≤ 20% in one pass.</td>
<td>Constant 2–6 km/h (± 0.2 km/h)</td>
</tr>
<tr>
<td>Research Society for Road and Traffic (Germany)</td>
<td>Self-propelled rollers with rubber tire drive are preferred; towed vibratory rollers with towing vehicle are suitable.</td>
<td>Each calibration area must cover at least 3 partial fields = 20 m. long</td>
<td>Level and free of puddles. Similar soil type, water content, layer thickness, and bearing capacity of support layers. Track overlap ≤ 10% machine width.</td>
<td>Dynamic measuring value; frequency; speed; jump operation; amplitude; distance; time of measurement; roller type; soil type; water content; layer thickness; date, time, file name, or registration number; weather conditions; position of test tracks and rolling direction; absolute height or application position; local conditions and embankments in marginal areas; machine parameters; and perceived deviations</td>
<td>The correlation coefficient resulting from a regression analysis must be ≥ 0.7. Individual area units (the width of the roller drum) must have a dynamic measuring value within 10% of adjacent area to be suitable for calibration.</td>
<td>Constant</td>
</tr>
<tr>
<td>Vägverket (Sweden)</td>
<td>Vibratory or oscillating single-drum roller. Min. linear load 15–30 kN. Roller-mounted compaction meter optional.</td>
<td>Thickness of largest layer 0.2–0.6 m.</td>
<td>Layer shall be homogenous and non-frozen. Protective layers < 0.5 m may be compacted with sub-base.</td>
<td>—</td>
<td>Bearing capacity or degree of compaction requirements may be met. Mean of compaction values for two inspection points ≥ 89% for sub-base under roadbase and for protective layers over 0.5 m thick; mean should be ≥ 90% for roadbases. Required mean for two bearing capacity ratios varies depending on layer type.</td>
<td>Constant 2.5–4.0 km/h</td>
</tr>
</tbody>
</table>

* Note: The 2007 Mn/DOT intelligent compaction projects will implement new/revised specifications for granular and cohesive materials including a light weight deflectometer (LWD) quality compaction pilot specification.
Presentations

The following is a list of the technical presentations delivered at the workshop. The slides follow.

1. Intelligent Compaction for Soils and Aggregate—David White
2. Intelligent Compaction (IC) for Hot Mix Asphalt (HMA)—Lee Gallivan
3. Automated Technologies in Construction—Dan Streett
4. Earthworks Engineering Research Center—David White
5. Intelligent Compaction at Mn/DOT—Glenn Engstrom, Craig Collison, and Art Bolland
6. European Experience with ICS—François Chaignon
7. Intelligent Compaction for Soil and Asphalt—Dean Potts
8. Asphalt Manager, Intelligent Compaction—Chris Connolly
9. Intelligent Compaction for Soils and HMA—Stan Rakowski
10. Evaluation of the Highway Subgrade Strength with the Acceleration Wave of the Vibration Roller—Stan Rakowski
11. Intelligent Compaction: GPS-based Compaction Control—Kirby Carpenter
12. Intelligent Compaction—Khalil Maalouf
13. Intelligent Compaction: Where we are at and where we need to be—Brett Stanton
Intelligent Compaction for Soils and Aggregate

Intelligent Compaction for Soils and HMA Workshop
West Des Moines, Iowa
April 2-4, 2008

David J. White, Ph.D.
Associate Professor
djwhite@iastate.edu

Iowa State University
Civil, Construction & Environmental Engineering

Outline

- Theory/Technology
- Specifications
- Why Important?
- Factors that Affect IC-MVs
- Correlation Studies
- Case histories

Technology

Caterpillar:
CMV, RMV, MDP

Dynapac:
CMV, Bouncing Value

Bomag: E_{50}

Sakai: CCV

Case/Ammann: k_c

IC Measurement Values

<table>
<thead>
<tr>
<th>Measure</th>
<th>Control</th>
<th>Setpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amm</td>
<td>$k = A^2/f_0$</td>
<td>$w_0 = 0.5(k_{cc} + f_0)$</td>
</tr>
<tr>
<td>Boming</td>
<td>$f_a = A^2/f_0$</td>
<td>$k_{dom} = 0.5(k_{cc} + f_0)$</td>
</tr>
<tr>
<td>Bomag</td>
<td>$E_{50} = f_0$</td>
<td>$k_{cc} = 0.5(k_{cc} + f_0)$</td>
</tr>
<tr>
<td>Sakai</td>
<td>CCV</td>
<td>$k_{cc} = 0.5(k_{cc} + f_0)$</td>
</tr>
</tbody>
</table>

Influence of Drum Operating Mode

Summary of operating modes (from Adam and Kopf 2004)

Influence of Drum Operating Mode

Influence of drum operating condition on roller MVA relative to soil stiffness

Roller MVA variation with soil modulus and drum vibration amplitude

(results of numerical simulations, from Adam and Kopf 2004)
Intelligent Compaction for Soils and Aggregate

David White

IC Specifications

Why Important - Subbase Non-Uniformity

(Vempu et al. 2004)

Subbase/Subgrade Non-Uniformity

Why Important - Process Control

(Thuner and Sandstron, 1980)

Factors Affecting IC – MVs

- Vibration Amplitude/Frequency
- Operating Speed
- Roller Size
- Soil Type
- Soil Stratigraphy
- In-situ Moisture Content

Repeatability / Reproducibility of IC-MVs

Low Amp

High Amp

4 = 0.85 mm

3 = 1.00 mm

2 = 1.75 mm
Intelligent Compaction for Soils and Aggregate

David White

Repeatability / Reproducibility of IC-MVs

- IC-MVs are **repeatable** under identical operating conditions
- **Reproducible** when:
 - Minor change in speed ~ 3 to 4.5 km/h and
 - NO Double Jump

Work in Progress
- Quantify Variation/Error associated with

1. **Repeatability**: CMV, CCV, EVB, k under “identical” operating conditions
2. **Reproducibility**: CMV, CCV, EVB, k under changing operation conditions: Speed, Amplitude, Direction of Travel

Measurement Influence Depth

- [Thurner and Sandstrom, 1980](#)
Intelligent Compaction for Soils and Aggregate

David White

Measurement Influence Depth

Correlations - In-Situ Testing Equipment

Final pass CMV and subgrade CBR for:
(a) RAP, (b) CAS-C, (c) CAS-C, (d) FA6, and (e) CA6-G

(White et al. 2007b)

Correlations – Averaging

Correlation Studies

(White and Thompson 2008)
Intelligent Compaction for Soils and Aggregate

Presentation 1
Intelligent Compaction for Soils and Aggregate

Regression Relationships

Correlations to PLT, LWD, DCP, Clegg

Comparison of k_s (solid line) and in-situ compaction measurements on a test strip comprised of subgrade material.

Correlations to DCP, LWD, PLT, Clegg, γ_d

Relationships between k_s and in-situ compaction measurements - subgrade material.

Correlations to LWD/FWD

Case History

TH 64 Reconstruction Project
Akeley, MN

Project Summary

- TH 64 Widening and Reconstruction Project – 10 km
- First earthwork project in US with IC technology implementation
- Some Main Features of Specifications
 - Control Strips: 100 m x 10 m plan size – Compacted until no significant increase in CMV is noticed with additional pass and IC target values (IC-TVs) are established.
 - Moisture Content: 65% to 95% of standard Proctor optimum.
 - Acceptance Specifications:
 - 90% of IC measurement values ≥ 90% of IC-TV
 - If significant portion of grade > 130% of IC-TV, the IC-TV will be re-evaluated
Intelligent Compaction for Soils and Aggregate

Construction

- Construction traffic contributing to compaction
- Evidence of the benefit of managing equipment fleet to aid in compaction process – mostly undocumented without IC
- Little compaction after first few passes – Importance of location and pass information from IC relays

Data Management Using GIS

- CMV and in-situ measurement values
- Kriged surface map of CMV
- Semi-variogram analysis of CMV

Optimizing Construction Process

- Characterizing Uniformity Using Geostatistics
- Representative Samples and Number of Tests

IC Results – Control Sections

- 1.1 m subcut Control Strip
- 0.25 m subcut Control Strip

Uniformity??

- Location of Grade Stakes
- Who’s actually compacting the sand?

Scenario 1, soil data assigned according to soil type: The standard deviation in each case is 4, so the number of tests required to characterize each soil type is \(n = (3 \times 4/4)^2 = 9 \) tests for a total of 18 tests.

Scenario 2, soil data pooled: The standard deviation for all six tests is 12, so \(n = (3 \times 12/4)^2 = 75 \) tests total.

Important Lessons: To reduce random error, data should be assigned according to IC MV’s. This requires that the IC maps be available during QA testing.
Lessons Learned

- Construction traffic contributing to compaction — well observed with 100% coverage of IC data
- Little compaction after first few passes — importance of compaction history from IC rollers
- CMV and in-situ test results are correlated at the project scale
- Scatter in relationships between IC and in-situ measurements — differences in measurement influence depth
- GIS can be used for effective data managing and archiving
- Geostatistics can help improve process control
- IC MV can be used to reduce # QA tests

Case History

US 60 Project
Bigelow, MN

Construction

Test Strip Construction and Testing

Comparison Test Results

Simple and Multiple Regression Analysis

Need to average data over a test strip for multiple passes to get narrow prediction limits
Intelligent Compaction for Soils and Aggregate

David White

Stresses under padfoot roller

Influence of Amplitude on CCV

Comparison Tests

Relationships

Lessons Learned

- MDP – sensitive to surficial soil properties
- Loaded scrapers used in compaction operations
- Moisture – important parameter to include in correlation analysis
- Amplitude did not influence the MDP values for soils wet of optimum moisture content

Spatial Testing
Intelligent Compaction for Soils and Aggregate

Spatial Comparison

Pass/Fail Criteria Maps

MDP and CMV – pass/fail maps

Thompson and White 2008

Spatial Comparison

Vennagusa and White 2008
Intelligent Compaction for Soils and Aggregate

Spatial Comparison

Lessons Learned

- Cannot run enough spot tests to create highly reliable spatial maps...IC is the best method
- IC data and LWD/DCP measurements show similar spatial variation

Case History

Bradshaw Field Training Area (BFTA) – Northern Territory, Australia

Joint Rapid Airfield Construction (JRAC) Program

June 11 – 25, 2007
Intelligent Compaction for Soils and Aggregate

Compaction Curves – IC-TVs

- Red = 1 to 5 roller coverages (vibrating and non-vibrating)
- Yellow = 6 to 9 roller coverages
- Green = 10 to 15 roller coverages
- Blue = >16 roller coverages

Red = Target CMV of 55 not achieved
White = Target CMV achieved
Grey = CMV > 115% of Target CMV
Intelligent Compaction for Hot Mix Asphalt

Intelligent Compaction (IC) for Hot Mix Asphalt (HMA)

Presentation Outline
- What is Intelligent Compaction
- Who’s doing what with IC
- Field Evaluation Studies
- Does IC work
- Real Time Data Management (Not yet)
- Correlation/Confirmation Testing

What is Intelligent Compaction Technology

An Innovation in Compaction Control and Testing

Office of Pavement Technology
Federal Highway Administration
www fhwa dot gov/pavement/

Intelligent Compaction----Definition----

What is “Intelligence?”
- Oxford Dictionary: “...able to vary behavior in response to varying situations and requirements”

- Ability to:
 - Collect information
 - Analyze information
 - Make an appropriate decision
 - Execute the decision

3000-4000 TIMES A MINUTE

Importance of Compaction

“We’ve known it for a long time...”

“The importance of compaction in highway construction has long been recognized. Recent laboratory and field investigation have repeatedly emphasized the value of thorough consolidation in both the base and surfacing courses. Thorough compaction is known to produce the following desirable results:

1. It increases interlocking of the aggregate particles, which is the primary factor in developing a high degree of stability.
2. It reduces the entrance of moisture, thus preventing excessive loss of stability under adverse service conditions.
3. It reduces the flow of air and water through bituminous mixtures and is therefore an effective means of lessening damage from weathering and film stripping.”

Reference: “Public Roads, May 1939, authors J. T. Pauls and J. F. Goode”

Conventional Density Testing Shortcomings

- **Density Acceptance...**
 - Limited Number of Locations
 - After Compaction is Complete
Intelligent Compaction for Hot Mix Asphalt

Basics of HMA Compaction

Compaction is the process of compressing hot mix asphalt into a smaller, denser volume.

Roadway Compaction

- Proper in-place density is vital for good performance
- Conventional compaction procedures have some limitations...
- Intelligent compaction technology appears to offer "a better way"

Benefits of IC for HMA

- Improve density...better performance
- Improve efficiency...cost savings
- Increase information...better QC/QA

IC for HMA

What are main components of IC
1. Vibratory rollers with a measurement system
2. Automatic feedback control system
3. GPS-based documentation system

IC for HMA

- How does an IC roller work? (cont.)
 - Feedback control system automatically adjusts parameters to optimize compaction
 - GPS tracks roller position and matches it with RMV, mat temperature, # roller passes
 - Printout – hardcopy
 - Color-coded mapping capabilities
 - Electronic record
Intelligent Compaction for Hot Mix Asphalt

IC for HMA

Caterpillar On-Board Display

Dynapac On-Board Display

Sakai IC Roller Project

IC National Efforts

- NCHRP 21-09 “Examining the Benefits and Adaptability of Intelligent Soil Compaction”

- The Transtec, Group, Austin, Texas (George Chang - PI)

NCHRP 21-09 Phase One Project

July 2006, MnROAD Research Center
Intelligent Compaction for Hot Mix Asphalt

NCHRP 21-09 Phase One Project

Iowa State University
Geotechnical Mobile Lab

"Advancing Intelligent Construction"

Bomag Tandem Drum IC Roller

Capabilities
- Stiffness (E_{VIB})
- Auto Feedback
- No GPS Mapping
- Strip Chart
 1. Temperature
 2. E_{VIB}
- Status: Available

Sakai Tandem Drum IC Roller

Capabilities
- Stiffness (CCV)
- No Auto Feedback
- GPS Mapping
 1. CCV
 2. Temperature
 3. Roller Passes
- Status: Available

Caterpillar Tandem Drum IC Roller

Capabilities
- No Stiffness (CMV)
- No Auto Feedback
- GPS Mapping
 1. Temperature
 2. Roller Passes
- Status: Available

Dynapac Tandem Drum IC Roller

Capabilities
- No Stiffness (CMV)
- No Auto Feedback
- GPS Mapping
 1. Temperature
 2. Roller Passes
- Status: Available
Intelligent Compaction for Hot Mix Asphalt

Lee Gallivan

Ammann/Case Tandem Drum IC Roller

Capabilities
- Stiffness (kb)
- Auto Feedback
- GPS Mapping
- Status: Planned

FHWA Pooled Funds Study (Soils / HMA)
- 3 year study of IC for Subgrade, aggregate bases, and HMA materials
- Work has started October 1st, 2007
- 13 participating states
- Estimate 1+ project / State / year ~ 15-20?
- Close coordination with NCHRP project – No repeats though
- To work closely with roller suppliers to increase the number of IC rollers and manufacturers

Accelerated Implementation of IC

Pooled Fund, Objectives
- Objectives: Based on data obtained from field studies:
 - Accelerated development of QC/QA specifications for granular and cohesive subgrade soils, aggregate base and Hot Mix Asphalt (HMA) pavement materials...

Pooled Fund, Objectives
- Develop an experienced and knowledgeable IC expertise base within Pool Fund participating state DOT personnel
- Identify and prioritize needed improvements to and/or research of IC equipment and field QC/QA testing equipment (DCP, FWD, GeoGauge, etc)
- One Stop Shopping for IC (Web Page)

www.intelligentcompaction.com
Intelligent Compaction for Hot Mix Asphalt

ICPF Technical Working Group
Dallas Texas, January 2008

Early Field Demo’s by Industry and DOT’s

Sakai IC Roller Project
Stiffness vs. Density During Breakdown Rolling
1. Fair correlation between stiffness of last breakdown roller pass and core density ($R^2 = 0.5613$)
2. All cores were cut after finishing rolling was done.
3. Coordinates of core locations were measured by GPS with accuracy of 5 ft.

Sakai IC Roller Project
Stiffness vs. Density During Finish Rolling
1. No correlation between stiffness and core density measured during finish rolling, ($R^2 = 0.0563$)
2. All cores were cut after finishing rolling was done.
3. Coordinates of core locations were measured by GPS with accuracy of 5 ft.
Intelligent Compaction for Hot Mix Asphalt

Lee Gallivan

Sakai IC Roller Project

Special Issues for HMA IC
- Thin lift construction
- Mixture type and size
- Allowable temperature ranges
- Surface vs. internal temperature measurement during placement
- Non-destructive, in-situ stiffness
- Response parameters

Question: Does IC work?
- Soils and Aggregate materials have had good experiences to date.
- HMA- the jury is still out, but stay tuned for future updates.

What have we learned so far?
- Roller manufacturers are responding to this interest by performing R&D, providing rollers and by coordinate efforts with state and national research efforts
- Preliminary findings for HMA from studies in US are not glowing but are encouraging

What is next?
- FHWA is committed to working with others to accelerate the study and implementation of the technology
- Two major national studies of IC technology are being performed along with state projects
- A large number of projects are planned for the 2008-2010 construction seasons.
- Short term goals are to increase the number of IC rollers in the US, to learn how to use the technology effectively and to develop construction specifications for all material types
Thank you
Automated Technologies in Construction

Automated Technologies

1. Primary Ingredient – Electronic Engineering Data (EED)
2. Three Technology Components
3. Multiple Business Benefits
4. NY 2007 Project Experiences
5. Building Confidence

Primary Ingredient

- Electronic Engineering Data (EED) Types
 - What to Transfer to Construction:
 1. Coordinates & Alignments
 2. DTM Surfaces (Feature Based)
 3. Graphics
 4. Storm & Sanitary Database
 5. Quantity Manager Database

Primary Ingredient

- Electronic Engineering Data (EED)
 1. Requires Consistent, Reliable & Accurate Electronic Data
 2. Created by Either Contractors or by DOT
 3. Designer Should Provide EED to Contractor
 4. Should be No Difference, Electronic vs Paper

1st Technology Component

- Automated Machine Guidance (AMG):
 1. On-Board Computer, GPS and Machine Sensors Continuously Measure Direction, Elevation, & Slope
 2. AMG Interpolates Engineering Data, Compares to the Spatial Position and Provides Directional Guidance
 3. Operator has On Screen Graphics and Indicator Lights for Guidance on Direction and Depth
Automated Technologies in Construction

Dan Streett

2nd Technology Component
- GPS Technology - Automated Stakeout & Inspection
 1. Use of GPS/RTK Rovers for Geospatial Positioning
 2. Engineering Data Input as Coordinates, Alignments and Surfaces
 3. Provides Stakeout and Inspection for Construction
 4. Can Collect Terrain Data Surfaces for Quantities
 5. NY Leverages the NYS CORS Network

3rd Technology Component
- Automated Quantity Computations
 1. Use of 3D Surfaces Instead of End Volumes
 2. Staff Time Saved by Automating
 3. Increased Accuracy & Fewer Mistakes
 4. Document & Expedite Payment Quantities

Benefits of EED
1. Eliminates Re-engineering of Data
2. Eliminates Re-entry of Data
3. Visualization of Designer Intent
4. Early Identification of Conflicts
5. Automated Calculations
6. Immediate Field Access to Project Info
7. Promotes Sharing of Data Between Parties
8. AUTOMATES CONSTRUCTION OPERATIONS

Benefits of AMG
1. Increased Productivity
 - Greatest Gains on Placement, Grading or Removal of Granular Materials
 - 30%-60% Reductions in Time Delays, Material Rework or Waste, & Labor Costs
2. Decreased Need for Foreman Oversight
3. Increased Safety Due to Fewer People Within Range of Equipment
4. Fewer Obstacles to Avoid in Field (No Stakes)
5. Increased Accuracy of Placement/Removal
6. Produces Higher Quality Finished Product

AMG Screen Views
Benefits of Automated Stakeout & Inspection

1. 1 Person Can Accomplish Work Formerly of 2-3
 - No Need for Measuring Tapes, Levels or Level Rods
 - Measurements are Automated & Documented
 - More Information Accessible to the Operator
2. Operators Prefer Independent Check of Locations
 - No Reliance on Stakes or Markers
3. Reduced Recalculation Mistakes or Keying Errors
4. Allows for More QC/QA of Work

Benefits of Automated Quantity Computations

1. More Accurate Interpretation of 3D Data
2. Reduced Calculation or Keying Errors
3. Takes 80% Less Effort
4. Small Changes are Instantly Adjusted
5. Documented Surfaces at Each Phase

NY 2007 AMG Experience

1. 8 Projects Evaluated in 2007
2. GPS Accuracy is Impressive
3. AMG Reduces Overuse/Undercut of Materials
4. Operators Learn Quick & Like Info Availability
5. AMG is Also Very Effective for Trenching
6. QC Against Known Locations & Elevations
7. AMG Uses Either 3D Surface Models, or Alignments, Profiles and Typical Sections

2007 Automated Stakeout & Inspection Experience

1. AMG Necessitated Use of GPS for Inspection
2. Found Use of GPS Effective, Efficient & Accurate
3. Operators Have Taken to GPS & Don’t Want to Work Without It
4. Allows for Real Time – On Demand Positioning Anywhere on Project
5. Provides Independent Checks for Contractor and Inspectors
6. Can be Connected to Bentley On-Site for Inspection Verification and Documentation
7. QC Against Known Control Points & Benchmarks

Today’s Graders W/ Robotic Total Station or GPS

Building Confidence

1. NY Contractors Who Use AMG, Have High Confidence
2. Construction Needs EED Which Reflects Designer’s Intent
3. Revised Survey Specs Now Require Sharing Electronic Data, and Verification of DTM
4. Sharing Data Increases Level of Trust Between Parties
5. No Difference Between Paper or Electronic Responsibility
6. Need to Build QC/QA into Automated Procedures
Automated Technologies in Construction

Related Activities on AMG

- AASHTO Technology Implementation Group (TIG) on AMG: Sharing National Best Practices
- NY AGC/DOT Subcommittee on Emerging Technologies: Sharing Improved Business Practices
- AGC/DOT Practitioner’s Meeting: Face-to-Face Discussions on What Data is Needed
- Southeast Area 2 Meeting: June 9-11, 2008 in Atlanta, GA

Summary

1. Contractors and DOT Find AMG:
 - More Productive, Saves Time
 - Safer and Greener
 - Higher Quality Products

2. DOT Inspectors Find GPS:
 - Faster Measurements
 - More Accurate Positions
 - Independent Results

3. Contractors & DOT Find EED:
 - Real World Data – ID’s 3D issues
 - Expedites Quantities & Payments
 - Reduces Errors, Increases Accuracy
 - Increases Trust & Confidence

Questions or Comments?

- Contact:
 - Daniel Streett, PE & LS
 - DSTREETT@DOT.STATE.NY.US
 - 518-485-8227

April 2, 2008
Earthworks Engineering Research Center

Think outside the box...GeoConE

- “The problems geo-engineers solve are important to society, and the current technological constraints are in many cases less likely to be solved by beating them with old approaches than they are to be cracked by new technologies and more interdisciplinary approaches...” (NRC 2006)

- Geo-engineers and construction engineers should look to entirely new technologies and approaches to solve problems faster, better, cheaper.

Strategies for Success

- Earthworks Engineering Research Center (EERC)
 - Innovative and Collaborative Research + Key Stakeholders + Policy Changes + Education = Success
- Geo-Construction Engineering Academic Program
- Infrastructure Development
- Strategic Research Initiatives
 - Construction efficiency and innovation (e.g., TPF 1188)
 - National security (e.g. JRAC)
 - Mitigation of natural hazards
 - Frontier exploration and development

Opportunity for Advancement...

- “The type and scope of geotechnical problems are changing, yet geotechnologists are for the most part not prepared for these changes.” (NRC 2006)

- “One of the greatest challenges that professionals in the geo-construction industry face is delivering dependable, reliable and cost efficiently designed and constructed "products"...” (ADSC 2005)

- “Addressing nation's 1.6 trillion infrastructure crisis ...” (ASCE 2005).

Earthworks Center – Business Model

- Vision
- Mission
- Focus
- Objectives
- Executive Board of Directors
- Scientific and Policy Advisory Council
- Sustaining Research Partners

Contact me with questions! Dr. David J. White, Iowa State University, Department of Civil, Construction and Environmental Engineering, 515.294.1483. Email at dwhite@iastate.edu.
Earthworks Engineering Research Center

Why Iowa State University?

- Recognized national leader in geotechnical and construction engineering
- Nation's only geotechnical mobile lab
- First in the country course covering GPS Machine Navigation/Guidance (CES94)
- CIRE staff and research management and technology transfer specialists
- 7th largest department and largest Construction Engineering Program in the U.S.

Future Earthwork Construction QC/QA

1. Improved process/machine control
2. Real-time wireless data transfer
3. Statistically meaningful data analysis
4. Verify Design with “Observational” Method
5. Performance specifications
6. FEM modeling
7. Environmental/beneficial/efficient operations
8. Archiving
9. NO FAILURES!

EERC Large-Scale Research/Training Facility

http://www.cire.iastate.edu/reports/
Intelligent Compaction at Mn/DOT

Intelligent Compaction at Mn/DOT

Glenn Engstrom, Craig Collison, and Art Bolland

IC Reflections

Intelligent Compaction at MnDOT

Glenn Engstrom, Craig Collison and Art Bolland, Mn/DOT
April 2, 2008
Des Moines, Iowa

WHY?

- Resources
- Mechanistic-Empirical Design
- Technology
 - IC
 - GPS
 - Data Storage
 - In-situ Testing
- Industry

QC/QA Task Force

- Membership
 - Materials, Construction, Districts, FHWA
 - Design Sub Group
 - Field Validation Sub Group

Task Force Objectives

- Define and implement QC/QA specifications and procedures
- Implement material property based compaction requirements.
- Implement statistically-based requirements and tests

District Materials Perspective
Intelligent Compaction at Mn/DOT

Glenn Engstrom, Craig Collison, and Art Bolland

Need for uniformity

- Soils
- Aggregates
- Hot-mixed Asphalt

Verification

- Need to verify pavement design values
- Need to verify compaction by layer, not after completion

Common Density Determination Practices

- Labor intensive
- Point tests

Value to Contractor

- Guidance to roller operator
- Measure performance of the operator
- Efficiency

District Construction Perspective

- Limited resources
- Limited expertise
- Limited time
- Fast, easy, accurate, reliable and cheap

Implementation Plan Goals

- Educate and train Mn/DOT staff and contractors to effectively use IC devices
- Refine current IC specifications based on lessons learned from IC implementation
- Advance the implementation of IC to use on non-granular materials and HMA pavements
- Develop the link between M-E pavement design and construction
Intelligent Compaction at Mn/DOT
Glenn Engstrom, Craig Collison, and Art Bolland

IC Implementation Project
- Task A - Monitor and Implement
 - MnDOT Staff Time

Training Modules
- Module 1: IC Implementation
 - Zero LWD Test Procedure
- Module 2: Test of Soil Compaction
- Module 3: LWD
- Module 4: Specification
- Module 5: IC QC - LWD QA Control Sheet Procedure
- Module 6: IC QC - LWD QA Production Procedure
- Module 7: Field Testing IC/ICP
- Module 8: LWD: Field Practice
- Module 9: LWD Field Practice

IC Implementation Project
- Task B - IC Validation Equipment
 - LWD’s, moisture, wireless, etc.

IC Implementation Project
- Task C - Training
 - Curriculum
 - Field Training

IC Implementation Project
- Task C - IC Data Management
 - Tool for Inspectors in Field
 - Visualization of IC Data (plan & profile views)
 - Splitting & Combining Coverages
 - Application of Geostatistical Analyses
 - Link to QA Data

IC Implementation Project
- Task D - Refine and Develop Specs
 - Eliminate control strips
 - Develop target values for IC and LWD
 - IC for non-granular
 - Calibration procedures
 - Future specifications (Statistically based)
Intelligent Compaction at Mn/DOT

Glenn Engstrom, Craig Collison, and Art Bolland

IC Implementation Project
- Task E - HMA Paving
 - Temperature and coverage

IC Implementation Project
- Task F - Research Assessment

IC Implementation Project
- Task G - Technology Transfer

2007 IC Projects
- Metro (Steve Adamsky)
 - S.P. 6211-81, T.H. 36, Maplewood
 - Granular
 - Non-Granular
- District 4 (Shiloh Wahl)
 - S.P. 0301-47, T.H. 10, Detroit Lakes
 - Granular & Non-Granular
- District 3 (Darren Nelson)
 - S.P. 7702-72, T.H. 10, Staples
 - Granular
- District 7 (Bob Williams)
 - S.P. 1703-64, T.H. 60, Bigelow
 - Non-Granular

Implementation Issues
- GO - District - Contractor - Supplier - Manufacturer - etc
- Data retrieval
- Data analysis
- LWD's

LWD
Intelligent Compaction at Mn/DOT

Glenn Engstrom, Craig Collison, and Art Bolland

Testing for Compaction
- Uniformity is the Priority
- Traditionally (Empirical Design, Trial/Error Based)
 - Specify Relative Density
 - Specify Moisture Limits
 - Test Rolling for some projects
- Future (Mechanistic Design, Stiffness Based)
 - Intelligent Compaction Equipment
 - Moisture Limits
 - DCP Strength, LWD Stiffness, or Test Rolling

Density Testing Issues
- Small Sample that is Labor Intensive
- Significant Lab Time
- Optimum Moisture for Compaction
- Strength May Not be Achieved
- Rutting Due to Moisture and Construction Traffic

Why Use Mechanistic Field Tests?
- Achieve agreement between construction quality assurance and pavement design.
- Quantify alternative materials and innovative construction practices.
- Show economic benefit of improved materials in terms of longer pavement life.
- Reward good construction practices.

Summary of Test Method
(ASTM E2583-07)
- Type of plate-bearing test.
- Load: Force pulse
- Vertical movement (deflection) is measured.
- The peak deflection and estimated elastic modulus is recorded.

Mn/DOT Standard LWD Configuration

Light Weight Deflectometer Video

~ 4 minutes in length
Intelligent Compaction at Mn/DOT

Glenn Engstrom, Craig Collison, and Art Bolland

Calibration by Test Institute

- Recommended Intervals:
 - Annually
 - 10,000 measurement, but at least in every 2nd yr.
- Measure stress under the load plate:
 - Standard Pressure = 0.20 MPa
 - Force = 6.28 kN
 - Drop Height = 54 cm
 - Load / Plate = 10 kg / 200 mm

On-Site Verification Testing

Objective:
To determine the repeatability of deflection measurements under defined conditions.

On-Site Verification Testing (cont.)

- Frequency
 - (Re-) Commissioning
 - Annually
 - Not repeatable
- Environment
 - Room temperature
 - Batteries fully charged
- On-Site Verification Facility
 - Unaltered over time
 - Concrete Foundation
 - Verification Pads

Control Strip - Roadbed Embankment

- Objective: LWD compaction target value
- Constructed for each:
 - Type and/or source of soil
 - Observables variations
 - Not limited: gradation, texture, silt & clay content, moisture content
- Incorporated into final embankment.
- 300 ft long and 32 ft wide
- Total Thickness
 - Planned Thickness
 - 4 ft maximum
Intelligent Compaction at Mn/DOT

Glenn Engstrom, Craig Collison, and Art Bolland

Control Strip
- 65 and 95% of OMC or EOMC
- LWD Testing
 - 6 drops without moving plate.
 - LWD-TV = \[
 \frac{LWD_{TV}}{3}
 \]
- Testing Frequency
 - Between each compaction pass
 - Minimum of 3 locations
 - 25 ft spacing

Acceptance Testing
- Testing Lot
 - 1000 ft length
 - Embankment Width
 - 1 ft increments
 - Minimum 3 / nominal vertical increment / testing lot
- Acceptance
 - \(E_s > 0.90 \cdot LWD_{TV} \)
 - Corrections as needed
 - Re-test
 - \(E_s > 1.20 \cdot LWD_{TV} \)
 - Re-evaluate LWD-TV selection
 - Construct new control strip

Typical Zorn LWD Values

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>LWD Modulus (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand w/ Silt</td>
<td>20-30</td>
</tr>
<tr>
<td>Silty gravel w/ sand</td>
<td>30-35</td>
</tr>
<tr>
<td>Silty sand w/ gravel</td>
<td>30-35</td>
</tr>
<tr>
<td>Poorly graded gravel</td>
<td>40-45</td>
</tr>
<tr>
<td>Silty sand</td>
<td>15-20</td>
</tr>
<tr>
<td>Clayey gravel</td>
<td>30-40</td>
</tr>
<tr>
<td>Well graded sand w/ silt</td>
<td>25-35</td>
</tr>
</tbody>
</table>

2008 LWD Quality Compaction Projects
- 17 Projects to Date - 2008
- 9 Projects - 2007
- 15 LWDs

Scope of Discussions
- Presentation: Dr. Fleming
 "Experience with LWD for Routine In Situ Assessment of Foundation Stiffness"
- Presentation: Dr. White
 "Mn/DOT Intelligent Compaction Implementation Seminar #4: Lessons Learned from IC and LWD Testing"

Light Weight Deflectometer Technology Transfer Workshop
Baxter, Minnesota (November 14, 2007)
Attendees: Project & Resident Engineers, Inspectors, Materials Engineers
Intelligent Compaction at Mn/DOT

Glenn Engstrom, Craig Collison, and Art Bolland

Positive Characteristics

- Quick and Easy
- Inspector remains on grade
- Made contractor more aware of what is needed for acceptance
- Better understanding of water content and processes
- Improved Uniformity
- Improved over DCP
 - Quicker
 - Contractor better understands results
- Reliable Measurements
 - (e.g., 199 LWD tests out of ~200 matched those of the DCP)

Troubles/Concerns

- Difficult portability in utility trenches.
- Can be a 2-person job.
- Not "light" weight.
- Water table can be drawn up and affect results.
- Setup of soil (soil curing)/bridging. Need to remove crust on clay prior to testing.
- LWD will move if sand is too wet and sloped.
- Need to level plate.
- Unable to obtain consistent LWD results with only 1 ft of sand above grade.

QC Contractor Responsibility

- Moisture testing and control was a continual battle.
- Contractor personnel are interested and asking for LWD values.
- Contractor is learning that scrapers should be run in different spots to achieve passing values compaction.

Changes Next Year

- Procedures need to be flexible, but balanced with the ability to enforce.
- Test on "surface" of aggregate base.
- Control strips need to be eliminated.
- Better if "over-built" and then dug down for testing with some confinement.

Some Keys to Success

- Know Your Organization
- Who makes the decision
- Beware of the pessimist and the optimist
- Find people that you know and will work with you
- Don't hold new technology to a higher standard
- Select Low Hanging Fruit
- You need to find your Rebecca
- Select "simple" projects
- Communication

Mn/DOT's Lessons Learned

- Operators learn how to make better decisions.
- IC roller must maintain contact across the drum to produce valid data (i.e., level surface).
- Soft areas can be identified and corrected earlier.
Mn/DOT’s Lessons Learned

- Works well on granular, 20% or less passing the #200.
- Produces a LOT of data - transfer and analysis methods need to be improved.
- Able to quantify grade stiffness variability

IC Future

- Continue to refine specifications
- Improve connection between field values and design criteria
- Create real-time data monitoring system
- Integrate data into construction quality system
- Monitor long-term pavement performance at IC projects

Questions?

Thank You!
European Experience with ICS

François Chaignon

8. Roadmap for Research

Dr. Bjorn Birgisson

European Experience with ICS

- Introduction
 - COLAS in a few words
 - European perspectives
- Tests on site
- Conclusions

COLAS SA (Cold Asphalt)

- 65,000 employees
- 45 countries
- Road construction

Average number of Group employees in 2006

Total: 62,278
 (in 2005: 60,176)
France only: 31,846
 (in 2005: 30,757)

Workers Office staff Management

21.6% 67.9% 10.5%

25% 61%

Geographical breakdown of revenue

2005 2006

18.1% 18.7%

54.9% 54.8%

18.7% 19.2%

Breakdown of Group activity

Roads Building materials

Concessions:

14.7% Colasite 16.3% Marketing 44.1% Marseilles

(86.8%) (13.2%)

853 279 441 311 198

Civil engineering, Pipelines, Marseilles

Safety Signage Waterproofing Building Railways
European Experience with ICS

François Chaignon

European Perspectives

- Tenders as usual
 - Low bidder
 - Sometimes quality bid
 - UK
 - Alternatives (F)
- Tenders not as usual
 - Performances bid
 - PPP
 - Portsmouth 25 years contract

European Perspectives

- Quality Assurance Plan
 - Document proposed by the contractor part of the contract
 - It explains what the contractor will do
 - It gives stop points in case of issues
 - It gives interactions between trades
 - It is discussed with the owner

European Perspectives

- Quality assurance plan
 - At the end of the job
 - It says what was done
 - It says what went wrong and how it was dealt with
 - Records of all what happens
 - So COMPACTION

European Perspectives

- Contractors do they own QA/QC
 - QC by the production means (lab, check list for the operations)
 - QA by entity outside the construction site

European Perspectives

- The owner
 - Checks the overall system
 - If it is weak or if he is not confident, the tests will be done randomly with a frequency function of the above
 - Checks the important characteristics for the owner:
 - Smoothness, IRI
 - Skid resistance
 - Comfort and safety of the drivers: tax payers

What about compaction?

- First factor: Quality Assurance Plan per job
- Second factor: Safety
 - In Europe, the pneumatic tire roller with 5t per wheel is forbidden for important safety concerns
 - Soils and HMA
European Experience with ICS

François Chaignon

What about compaction?

- With these two important factors
- The arrival of ICS was interesting in order to:
- Give important data for the QAP
- Look at replacement of 5t per wheel PTR

ICS approach

- Soil
- Cement /lime treatment (sand, Gravel, ...)
 - 13t axle weight
 - Important strong base course
 - Rarely gravel base on high traffic
- Hot mix Asphalt
 - Breaking roller was a PTR
 - Then a vibratory roller

AMMAN

BOMAG

HAMM

French classification for Rollers kg/cm

CLASSEMENT DES COMPACTEURS VIBRANTS :
European Experience with ICS

François Chaignon

TESTS on SITE

TESTS on site (1)

- Show the efficiency of the various systems
 - On HMA
 - On soil and base courses
 - Cement treated soil
 - Cement stabilized base
 - Cement treated sand

TESTS on site (2)

- Show the efficiency of the various systems
 - Compaction measurements:
 - Nuclear gauge
 - Stationary nuclear device to check core (gradient)
 - Macro-texture
 - Sand patch test
 - Smoothness

Cement stabilized layer 250 mm (10"

EVOLUTION DU COMPACTAGE

- Series 1: 150 mm
- Series 2: 200 mm
- Series 3: 250 mm

- Average compaction: 100.2%
- Plaques: better surface aspects
European Experience with ICS

François Chaignon

Cement stabilized layer 250 mm (10").

Evolution du compactage

Série N°1 : 150 mm Série N°2 : 250 mm Série N°3 : 250 mm

- Small gradient
- Average compaction: 99%
- Enhancement of the surface aspect

HMA 60mm (2",1/2)

Comparison PTR + VR to VR

<table>
<thead>
<tr>
<th>Compaction</th>
<th>% voids</th>
<th>STD</th>
<th>DEV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment</td>
<td>AVERAGE</td>
<td>5.70%</td>
<td>0.033</td>
</tr>
<tr>
<td>AV95 T (vibrant)</td>
<td>5.70%</td>
<td>0.033</td>
<td></td>
</tr>
<tr>
<td>AV95 ACE (vibrant)</td>
<td>5.00%</td>
<td>0.037</td>
<td></td>
</tr>
<tr>
<td>PTR91AV95 T</td>
<td>6.40%</td>
<td>0.036</td>
<td></td>
</tr>
</tbody>
</table>

Comparison PTR + VR to VR

Macro-texture

<table>
<thead>
<tr>
<th>COMPACTION</th>
<th>HSV</th>
<th>HSV</th>
<th>HSV</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQUIPMENT</td>
<td>AVERAGE</td>
<td>MN</td>
<td>MAX</td>
</tr>
<tr>
<td>AV95 ACE (vibrant)</td>
<td>0.59</td>
<td>0.5</td>
<td>0.7</td>
</tr>
<tr>
<td>PTR91AV95 ACE</td>
<td>0.5</td>
<td>0.37</td>
<td>0.66</td>
</tr>
</tbody>
</table>
European Experience with ICS

François Chaignon

Comparison PTR +VR to VR

AV 95 CE: abacus for KB and mixes

ASPHALT MANAGER

CONCLUSIONS (1)

• First generation
 • BONAG
 • Ruggedness OK
 • Technology average
 • AMMAN
 • Ruggedness not OK
 • Technology very good

CONCLUSIONS (2)

• Operators have to be trained
• Operators have to be involved
• Strong link between Tech and Equipment
• Knit per wheel can be replaced
CONCLUSIONS (3)

As a contractor, we pave in the North of France
500-700t per day with one roller instead of two

We are working very closely with the suppliers
Are we doing it for them or for us?

Other companies use them as usual

Thank you for your attention

Any Questions?
Intelligent Compaction for Soil and Asphalt

Dean Potts - Engineering Manager
Advanced Design Group

AccuGrade® Technologies

AccuGrade® Cross Slope
- Controls the slope of the blade to maintain desired surface cross slopes.

AccuGrade® Sonic
- Maintains the blade at a vertical distance to an external reference.

AccuGrade® Laser
- Provides constant elevation information for accurate blade positioning.

AccuGrade® ATS (Advanced Tracking System)
- Instrument tracks a on-board target for precise 3D positioning.

AccuGrade® GPS
- Compares the blade position to a 3D computerized site plan.

AccuGrade® Site Reference System
- Allows the operator to set target grades relative to points on the work site.

AccuGrade® Product Line

- **Track Type Tractor**
 - AccuGrade Laser
 - AccuGrade GPS

- **Motor Grader**
 - AccuGrade Cross Slope
 - AccuGrade Laser
 - AccuGrade GPS
 - AccuGrade ATS

- **Excavator**
 - AccuGrade GPS (Indicates only)

- **Compactor**
 - AccuGrade Compactor GPS (Indicates only)

AccuGrade® Office

- Converts engineering design files to AccuGrade compatible format
- Supports wireless communication between the machine and office
- Allows “drill-down” of compaction data
- Compatible with all AccuGrade machines
- Supports text messaging in real time with operator
- Productivity module for cycle times, as-built data, and production related information
- Compaction module for detailed compaction analysis

AccuGrade® Office

Compaction Module
- Allows inspectors to analyze compaction data by providing a detailed view of the various layers, passes, and CCV’s of the designated compaction area.
- The module saves and enables the inspector to view the time, date and location of compaction information such as:
 - CCV/layers
 - CCV/pass
 - Thickness/pass
 - Thickness/layers
 - Vibration state
 - RMV
 - Amplitude
 - Direction of travel
 - Vibration state
Four Types of Compactor based Compaction Measurement.

1. The Compaction Meter Value method (CMV & CCV)
 - Drum mounted accelerometer measures G-forces at vibratory frequency and harmonics (typically vertical accelerations only)
 - Signals can be used to control amplitude of drum.
2. The Force vs Displacement method. (E-vib, Kb)
 - Drum mounted accelerometers/position sensors.
 - Signals can be used to control drum amplitude and frequency.
3. The Energy or Machine Drive Power (MDP) method.
 - Measures driveline power used to roll over soil or asphalt with corrections made for grade and machine acceleration.
 - Works on both vibratory and non-vibratory compactors.
4. Pass Count and Temperature Measurement (asphalt)
Intelligent Compaction for Soil and Asphalt

Dean Potts

Operator Display

Operator Display

Computer Model Simulation – Stress in layers of Asphalt, Granular & Cohesive Sub-soils

CP-563E with Machine Drive Power

HARD OBJECTS LIKE A ROCK WILL CAUSE HIGHER GSV’S

SOFT OBJECTS LIKE A CLAY BALL WILL CAUSE LOWER GSV’S
Intelligent Compaction for Soil and Asphalt

Dean Potts

Temperature Plot

Pass Count Plot

Jobsite: Operator Display

IC for Asphalt Compaction

Things to be aware of:
- Stiffness of asphalt changes greatly with temperature changes, even without compaction.
- Infra-red temperature sensors look at the surface temperature, not the mean or core temperature, or temperature of layer below the new asphalt. (reference all the inputs to Pave Cool program)
- Accelerometer based methods tend to measure both new lift and base below.
Asphalt Manager, Intelligent Compaction

WHAT IS INTELLIGENCE

1) Collect Information

2) Use the Collected Information to Make a Decision

3) Execute the Decision

BOMAG

History

Surface Covering Compaction Measurement

1983 Terrameter BTM 01 (OMEGA)
1993 Guidelines for Surface Covering Measurements National Research Association
1994 ZTVE / TP BF-Stb 94, proof methods FDVW/SCCC
1996 Compaction Management System BCM 03
1998 VARIOCONTROL
2001 Measuring device for evaluation of stiffness (Evib)
2004 Modular Measuring System with GPS support

BOMAG

History

BOMAG Compaction Technology

1996 Variomatic for asphalt rollers
1998 Variocentral for soil rollers
2000 Evib (MN/m²)
2001 Asphalt Manager
2004 Research project of German DOT (BAST), Oct / Nov. 2004;

BOMAG

Asphalt Manager

VARIOMATIC roller with directed vibration

Control unit

High Dynamic energy

Compaction principle: static, dynamic and Dynamic energy. Internal control via type of material, compatibility, layer thickness and base layer conditions.
Applications: asphalt layers, granular bases and subbases.

BOMAG

Asphalt Manager

Worldwide proven design:

Several hundreds Tandem rollers

BW 151 AD-2

BW 174 AD
Asphalt Manager, Intelligent Compaction

BOMAG Rotary Exciter

Non Directed Forces:

BOMAG Vibration Systems

Rotary exciter Oscillation directed

BOMAG Vibration Systems / Overview

<table>
<thead>
<tr>
<th></th>
<th>Vibration</th>
<th>Oscillation</th>
<th>Variomatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principle</td>
<td>Rotary exciter with 2 rotary excitors with 2 unbalanced weight</td>
<td>unbalanced weight</td>
<td>unbalanced weight counter rotating</td>
</tr>
<tr>
<td>Oscillation</td>
<td>non directed</td>
<td>directed</td>
<td>directed horizontally to vertically</td>
</tr>
<tr>
<td>Amplitudes</td>
<td>up to 6</td>
<td>2 fixed amplitudes</td>
<td>0 - 0.9 mm</td>
</tr>
<tr>
<td>up to 1.3 mm</td>
<td>ca. 1.3 mm</td>
<td>automatic variation</td>
<td></td>
</tr>
<tr>
<td>Frequencies</td>
<td>35 - 70 Hz</td>
<td>33 - 42 Hz</td>
<td>35 - 50 Hz</td>
</tr>
<tr>
<td>Control system</td>
<td>manual</td>
<td>manual</td>
<td>automatic variation</td>
</tr>
</tbody>
</table>

BOMAG Depth effect

Comparison:
- Rotary exciter (no infinite variation)

Variomatic (automatic compaction)

BOMAG Directed exciter system

Advantages vs. Rotary exciter:
- Better depth effect
- Excellent Asphalt surfaces
 - Eveness
 - Grip / roughness
Asphalt Manager, Intelligent Compaction

Benefits for contractors:
- Universal use on
 - Road base
 - Wearing course layers
 - Thin layers
- Higher compaction performance
- Uniform compaction, even on sub-bases with inhomogeneous stiffness
- Better evenness and more uniform surface structure
- Low tendency to scuffing

Compaction of 6 cm asphalt binder course 0/10, RN13 France
Operating weight and compaction technique affect smoothness and evenness.

15 t tandem vibratory roller
8 passes

8 t BOMAG VARIOOMATIC BW 151 AD
8 passes

Density and roughness measurement on asphalt binder layer

<table>
<thead>
<tr>
<th>Compaction</th>
<th>Roughness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portable isotope probe</td>
<td>Mobile isotope probe</td>
</tr>
<tr>
<td>n</td>
<td>X1</td>
</tr>
<tr>
<td>4 passes with 18 t rubber tire roller and 4 passes with 15 t tandem vibratory roller</td>
<td>14</td>
</tr>
<tr>
<td>8 passes with BW 181 A2-2 VARIOOMATIC</td>
<td>14</td>
</tr>
</tbody>
</table>

n = number of measurements, X1 = mean value of asphalt Gyrato test compaction value (10% Gyrato value – 20% Marshall value), X2 = mean value of characteristic roughness value

Latest developments of compaction technology

1996 - Variomatic for asphalt rollers
1998 - Variocontrol for soil rollers
2000 - Evib (MN/m²)
2001 - Asphalt Manager
Continuous compaction control for soil compaction

Exchange of energy between roller and soil

Asphalt Manager with new measuring value E_{vis} [MN/m²] and temperature gauge

BOMAG

Directed Exciter System

Vibration motor
Exciter housing (utable)
Unbalanced weights (counter rotating)
inner: No. 2 + 3
outer: No. 1 + 4
Compaction force
Sliding motor S

BOMAG VARIOCONTROL

Force direction control: infinite adjustment of exciter housing from horizontal to vertical.

Asphalt Manager, Intelligent Compaction
Asphalt Manager, Intelligent Compaction

Benefits for Operators:

- No critical decisions required
- All operators achieve better results:
 - good and uniform compaction
- Continuous information on
 - asphalt temperature
 - compaction increase

Technical Data

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>BW 141 / 151 AD</th>
<th>BW 190 / 203 AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front: AM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oper. weight kg</td>
<td>8.000</td>
<td>8.400</td>
</tr>
<tr>
<td>Drum width in</td>
<td>59</td>
<td>66</td>
</tr>
<tr>
<td>Amplitudes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>front mm</td>
<td>0.96</td>
<td>0.95</td>
</tr>
<tr>
<td>rear mm</td>
<td>0.64 / 0.27</td>
<td>0.6 / 0.25</td>
</tr>
<tr>
<td>Frequencies</td>
<td>Hz</td>
<td></td>
</tr>
<tr>
<td>front / rear</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Comp. force</td>
<td>kN</td>
<td></td>
</tr>
<tr>
<td>front</td>
<td>160</td>
<td>168</td>
</tr>
<tr>
<td>rear</td>
<td>80 / 34</td>
<td>80 / 34</td>
</tr>
</tbody>
</table>
Asphalt Manager, Intelligent Compaction

BOMAG Bomag Operational Panel

Printer
- Start
- Stop
- Print out
- Delete

Test procedure:
- Mark the track to be compacted
- "Manual operation mode" with
- Fixed amplitude
- Fixed working speed

BOMAG Bomag Operational Panel

SETTINGS
- Escape
- Enter

BOMAG

BOMAG

BOMAG

BOMAG

BOMAG Printer

E_VIB - Printer

- E_VIB Max. / E_VIB Min.
- E_VIB Average
- Frequency
- Average Speed
- Track length
- Temperature
Asphalt Manager, Intelligent Compaction

BOMAG

Advantages:
- Immediate determination of dynamic stiffness in MN/m² (E_{sv})
- E_{sv} can be correlated with the increase of compaction
- E_{sv} is widely independent from roller parameters
- E_{sv} printouts for area covering compaction control

In Development:
- Target E_{sv} values to be pre-selectable
- "Ready" indication if target value is achieved (red light)
- "Ready" indication if no further compaction is possible (red light)

Recommended figures:

<table>
<thead>
<tr>
<th>Layer thickness d [cm]</th>
<th>3 t</th>
<th>6 t</th>
<th>9 t</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2 - 4</td>
<td>1 - 2 (L)</td>
<td>1 - 2 (L)</td>
</tr>
<tr>
<td>4</td>
<td>2 - 4</td>
<td>2 - 4 (L)</td>
<td>2 - 4 (L)</td>
</tr>
<tr>
<td>6</td>
<td>4 - 8</td>
<td>4 - 8 (L, H)</td>
<td>4 - 8 (L, H)</td>
</tr>
<tr>
<td>10</td>
<td>6 - 8</td>
<td>6 - 8 (H)</td>
<td>6 - 8 (H)</td>
</tr>
<tr>
<td>14</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

SMA
- $d = 2$
- $d = 4$

Porous asphalt
- $d = 4$

- $L = $ low amplitude, $H = $ high amplitude
- Assumption: Compaction temperature $= 160^\circ$C
- 3 t = Machine with only the amplitude

BOMAG

VARIOMATIC 2

Further advantages:
- better gradability - less shoving effect

Automatic force adaption with travel direction

BOMAG

Asphalt-Manager

Evib (MN/m²) Vibration modulus

Equivalent for dynamic Stiffness;

Directly picked up by the roller;

Physical value for compaction increase on asphalt.
Asphalt Manager, Intelligent Compaction

Chris Connolly

BOMAG

Asphalt Manager

Benefits for Contractors: *Investment for Profit*

- Uniform and predictable results while rolling
- Avoids under / overcompaction
- Better evenness and roughness
- Eliminates drum bouncing

Economical and quality aspects
- More efficient roller utilization with fewer passes
- Reduced shock loads in sensitive environment, e.g., buildings, bridges
- Area coverage method

Temperature development

- Base course - Temperature profile vs. No. of passes

E_{vib} [MN/m³] vs. Marshall density [%]

Compaction test on asphalt wearing course (stone mastix asphalt)

- Perfect correlation: $E_{vib} \times$ Marshall density
- Adequate conditions:
 - Temperature between (170-120 °C)
 - Asphat layer on solid ground

Compaction test on asphalt wearing course (stone mastix asphalt)

- Increase of $E_{vib} = \text{Increase of compaction}

Application

- Comfort + Quality:
 - Compaction of joints hot against cold
 - Avoids shock loads
 - No bouncing
 - Better eveness

Leipzig:

- “Augustusplatz”
- Compaction on a parking roof top:
- Alternatives:
 - 15 t static roller
 - 15 cm layers
 - With BVM
 - 40 cm layers

BOMAG

Application
Asphalt Manager, Intelligent Compaction

Chris Connolly

Application

- Avoids shock loads on bridges and near buildings
- Depth control via force adjustment
 - 3 automatic control ranges
 - 6 manual force directions (fixed)

Investment Series 4

Features
- Modular Design Principle:
 - Operator Platform
 - Central Electric System
 - Travel / Vibration Pumps and Motors
 - Support Legs

Benefits
- Less Expenses for Warehousing, Training, and Logistcs;

Surface Quality

Racing Course „Sachsenring“

Perfect Results:
- Roughness
- Evenness

Concise Operating Instructions Asphalt Manager

<table>
<thead>
<tr>
<th>Conditions of the substrate</th>
<th>Automatic</th>
<th>Force level</th>
<th>Resistance (N/m²)</th>
<th>Normal force (N)</th>
<th>Internal location</th>
<th>Outside location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt bearing material</td>
<td>9.5</td>
<td>9.5</td>
<td>9.5</td>
<td>9.5</td>
<td>9.5</td>
<td>9.5</td>
</tr>
<tr>
<td>Sandstone</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
</tr>
<tr>
<td>Concrete</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Current Developments

- Surface covering compaction control on asphalt layers
- GPS receiver
- GPS reference station
- Roller PC for data managing and graphical representation of roller position and stiffness values
- Position accuracy: better than 10 cm
- CAD based evaluation program
Roller positioning with total station (total station) for continuous compaction control on asphalt layers
Asphalt Manager, Intelligent Compaction

BOMAG

Determination of roller positions with GPS

- **Reference station on the job site**
 - High accuracy: up to 5 cm

- **GPS Reference service with reference satellite**
 - Accuracy: up to 100 cm
 - OmniSTAR (world wide) ~1500.- Euro annual charge
 - EGNOS (Europe, not yet in operation) free of charge
 - WAAS (North America)

- **Local Reference network (reference service)**
 - High accuracy: up to 5 cm (depending on service)
 - Ascos (since 2001, Ruhrgas / Germany, only available in Rhine Area)

BOMAG

GPS / positioning with Reference Station

- Two GPS Antenna
- Reference station (Trimble)
- High accuracy (5cm)
- RTK (real time)
- BCM 05 positioning software
Intelligent Compaction for Soils & HMA

Change of Drum Acceleration

Changes in Amplitude Spectrum and Increase in Compaction

Simulation Results

CCV System

Intelligent Compaction for Soils and HMA

Stan Rakowski

Filtered with band pass filters which correspond to 6 frequencies.

CCV formula:
CCV = \left(\frac{A1 + A3 + A4 + A5 + A6}{A1 + A2} \right) \times 100

Other formulas:
CCV2 = \left(\frac{A3 + A4 + A5 + A6}{A1 + A2} \right) \times 100

PWR2 = \left(\frac{A3 + A4 + A5 + A6}{A1 + A2} \right) \times 100

*PWR2 = Public Works Research Institute in Japan
Intelligent Compaction for Soils and HMA

Real Time Moving Display
- VALUE directly under the vibrating drum
- Moving display
- Soft spot
- Vibration Frequency in Hz
- Adjusts CCV range from 30 to 100
- Adjusts time range from 6 to 60 sec
- Target value indicates specified compaction level
- Stiff spot: No more compaction is needed

Density/Stiffness Correlation
- CCV is correlated with target density or stiffness using calibration switch

Contractor Experience
- CCV correlates well with conventional single point tests.
- Increases project efficiency.
- Expectations are the same for asphalt pavements as observed for unbound aggregates.
 - Increased efficiencies
 - Lower risk
 - Better quality pavements

Sakai Compaction Information System (CIS)
Intelligent Compaction for Soils and HMA

Stan Rakowski

RTK GPS
Centimeter Accuracy

GPS Receiver & Radio

True Real Time Digital Data

Compaction Area:
from STA516+40 to STA517

Operator: Smith
Vehicle: Compactor
Date: 01/25/17

Mix Design:
Type: Hot Mix Asphalt
Aggregate: 50%
Mineral Filler: 5%

Work Done:
Passes: 10

Quality:
Voids in Mineral Aggregate: 25%
Porosity: 5%

Materials:
Aggregate: 50%
Mineral Filler: 5%

Time:
Start Time: 09:00
End Time: 10:00
Intelligent Compaction for Soils and HMA

Future Developments

- Real time wireless network (2009)
- Server network system (2009)

Software Solutions

- Machine control grading/design programs
- Multifaceted Data Analysis and maximum use of data 2D, 3D analysis
- Data transparency
- Effective use of Data Obtained
- Monitoring of pavement layer life
- Real time data management and archiving
Intelligent Compaction for Soils and HMA

Number of Roller Passes during Breakdown Rolling

- NRP is not uniform.

Number of Roller Passes during Finish Rolling

- NRP is not uniform.

Stiffness of Pavement during Breakdown Rolling

1. The stiffness at the final roller pass in each location.
2. Variation: 30 to 90 MN/m² (4,350 to 13,055 PSI).

Stiffness vs. Density during Breakdown Rolling

1. Better correlation between stiffness measured during breakdown rolling and core density.
2. All cores were cut after finishing rolling was done.
3. Coordinates of core locations were measured by GPS.

Stiffness of Pavement during Finish Rolling

1. The stiffness at the final roller pass in each location.
2. Variation: 30 to 60 MN/m² (4,350 to 8,700 PSI).

Temperature of Pavement Surface during Breakdown Rolling

1. The surface temperature at final roller pass in each location.
2. Variation: 270 °F to 180 °F.
Intelligent Compaction for Soils and HMA

Stan Rakowski

Number of Roller Passes

Displays the number of passes and shows compaction coverage.

Compaction Control Value

CCV gives the roller measured compaction value. The dots indicate the location of cores drilled from the pavement.

Surface Temperature

Surface temperature °C at compaction.
Intelligent Compaction for Soils and HMA

Stan Rakowski

HMA Factors

- Temperature affects stiffness
- Uniformity of mat placed by paver
 - Material Segregation, Temperature variations
 - Consistent paver speed and lift thickness
- Subbase condition
- Longitudinal Joint

To get good information on HMA

- Monitor the initial conditions
 - Smoothness should be measured before and after the test strip especially when paved over a milled surface.
 - Thermal and Material segregation should be measured after lay down.
 - Create new index to evaluate uniformity of compaction
Thank you
Evaluation of the Highway Subgrade Strength with the Acceleration Wave of the Vibration Roller

Stan Rakowski

Objectives of Test Project

- Establish new compaction QC method for embankment and subgrade using acceleration of vibratory roller such as CCV.
- Comparison of the conventional testing method with the new one such as CCV.
- Investigate the influence of various levels of stiffness of underlying layer on the drum acceleration measured on the upper layer.

SAKAI CCV Compaction Control Value

Test Section View

Roller in Test Section

Mechanical Quantities Measured

- CCV
- Density by nuclear gauge
- Stiffness by plate loading test
- Deflection by Benkelman beam and FWD
- Surface sinkage
Evaluation of the Highway Subgrade Strength with the Acceleration Wave of the Vibration Roller

Stan Rakowski

Material Information

<table>
<thead>
<tr>
<th>Unified Classification System</th>
<th>Gravel Sand (GS)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density of soil particles</td>
<td>t/m³</td>
<td>2.644</td>
</tr>
<tr>
<td>Maximum aggregate size</td>
<td>mm</td>
<td>75.0</td>
</tr>
<tr>
<td>Uniformity Coefficient Uc</td>
<td></td>
<td>16.7</td>
</tr>
<tr>
<td>Max dry density</td>
<td>t/m³</td>
<td>1.902 (E-b)</td>
</tr>
<tr>
<td>Optimum moisture content</td>
<td>%</td>
<td>12.0</td>
</tr>
<tr>
<td>Average moisture content during test</td>
<td>%</td>
<td>8.5</td>
</tr>
</tbody>
</table>

Test Rollers

<table>
<thead>
<tr>
<th>Model</th>
<th>SV510DV</th>
<th>BW212D-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make</td>
<td>SAKAI</td>
<td>BOMAG</td>
</tr>
<tr>
<td>Mass</td>
<td>kg</td>
<td>11,400</td>
</tr>
<tr>
<td>Centrifugal force</td>
<td>kN</td>
<td>226</td>
</tr>
<tr>
<td>Frequency</td>
<td>Hz</td>
<td>30</td>
</tr>
</tbody>
</table>

Influence of Stiffness of Underlying Layer on CCV

Density by nuclear Gauge & CCV

Density vs. CCV

Deflection by FWD and CCV
Evaluation of the Highway Subgrade Strength with the Acceleration Wave of the Vibration Roller

Stan Rakowski

Summary

- CCV measured on the overlying layer is affected by the stiffness of the underlying layer.
- CCV increases with an increase of number of roller passes.
- CCV showed better correlation between dry density.
- CCV decreases with an increase of moisture content.
- CCV correlates with the deflection measured by Benkelman beam and also the deflection measure by FWD.
Intelligent Compaction: GPS-based Compaction Control

Kirby Carpenter

ACEplus - Checking the Compaction Development

ACEplus shows: Good Compactibility of Soil Material

ACEplus shows: Bad Compactibility of Soil Material

ACEplus - Compacted Soil Different Subgrade

ACEplus - How The Data Output Looks.

Intelligent Compaction (Benefits for the Customers)
Intelligent Compaction: GPS-based Compaction Control

Kirby Carpenter

Sustainable Compaction

- Homogeneous, optimal Compaction Results.
- Continuous Compaction Control (GPS).
- Permanent Record.
- Peace of mind for owner.

Correlation Between Testing and performance is excellent!

- 100% Inspection of job.
- Possibility of reduced testing costs.
- Feedback Control System: Automatic Adjustment of Compaction Energy. (Amplitude, Frequency, Impact Spacing)

Efficiency

- Less Labor.
- Fewer Passes.
- Less Fuel.
- Lower Emissions.
- Less Wear & Tear on machine.
- No Over Compaction.
- No Time Wasted if Conditions do not Permit Compaction.

Advantages for Project Owner or Partner

- Best available state of the art technology.
- Supplemental process covering 100% of project.
- Provide a permanent record of project compaction.
- Detect compaction deficiencies deeper into the sub grade.
- Reduced machine operation to achieve compaction means less fuel burned and reduced emissions.
Intelligent Compaction

IC Technology Consensus

- Immediate and comprehensive feedback to the operator
- Compaction measure needs to be accurate to improve operation
- Transparent documentation with 100% coverage (QC)
- IC = Compaction Measure + Mapping Utility + Drum Feedback Control
 (But two out of three functionalities is OK also!)
- Need to identify which material and construction practices IC is best suited for
- Accuracy and validation of benefits is an ongoing effort
- Accepted Standards for calibration methods (not necessarily the compaction measure) can help advancing the technology
- System cost should be consistent with added job site efficiency

IC is one part that must fit well within the rest of the operation

Soil Compaction – Volkel Based System

Soil Compaction – Trimble Based System

Asphalt Compaction – Research at Un. Of Oklahoma Intelligent Asphalt Compaction Analyzer (IACA)

Principle of Operation of the IACA
Intelligent Compaction

IACA – Activities
- Tested in "initial" lab and field experiments with Encouraging Initial Results

On Going Comprehensive Validation Program on diverse construction sites
Intelligent Compaction: Where we are at and where we need to be

Brett Stanton

INTRODUCTION

CONTRACTOR’S DEFINITION:
Intelligent compaction is a compaction system that allows increasing productivity while decreasing risk.

REGULATORY AGENCY’S DEFINITION:
Intelligent compaction is another means of measuring and recording the quality of compaction during the construction process.

EXPERIENCE

- **Experience with Intelligent Compaction**
 - Unbound Crushed Aggregate Base
 - Rubbilized Concrete
 - Asphalt Pavement
 - Future Expectations

- **Intelligent Compaction on CABC**
 - Good correlation between nuclear density gauges and CCV for aggregate base courses using established test strips
 - Greatly improves efficiency by reducing over rolling
 - Base courses were not left open to weather and traffic as long prior to paving
 - Improved communication with inspectors and a reduction in QC testing intervals

- **Intelligent Compaction on Rubbilized Concrete**
 - 426,000 tons of HMA over rubbilized concrete - MDOT Warranty project
 - Rubbilized to stop reflective cracking
 - Typical modulus values of the layer: 50ksi
 - Correlated results from Falling Weight Deflectometer (FWD) to readings from CCV device
Intelligent Compaction: Where we are at and where we need to be

Brett Stanton

EXPERIENCE

- CCV ensured aggregate interlock of PCC layer by not over rubblizing
- Intelligent compaction is much quicker than translating FWD numbers and could be used to VALUE ENGINEER HMA overlays on rubblized PCC
- Could increase modulus numbers easily to 150ksi from 50ksi, a three fold increase

Experience

Intelligent Compaction on Asphalt Pavement

- Uniform asphalt pavement densities are related to:
 - Temperature
 - Mix Uniformity
 - Uniform rolling patterns
- Current technology allows the monitoring of:
 - Temperature
 - Rolling Patterns
 - Density?

Roller

coverage as determined by GPS Data

Experience

CONCLUSION

- Intelligent compactors correlated well with density results on CABC
- Can be used to determine amount of rubblization needed for rubblized PCC pavements
- Intelligent compaction has increased project efficiency
- Lowered contractors exposure to risk
- Allows for crucial future design data to be gathered for performance
- Can aid in value engineering pavement
- Can supply continuous QC information
- Benefits the traveling public by reducing user delays
Future Expectations

- Lower the overall risk on PWL projects and warranty work
- Provide better quality pavements by not damaging or over-rolling
 - Aggregate damage of SMA
 - Uniform density
 - Ride quality
 - Temperature monitoring can aid in detecting plant problems
- Further increase efficiency
 - Fewer number of rollers needed
Facilitator Report / Discussion

Tom Cackler, Ed Engle, Heath Gieselman, Lisa Rold, Douglas Townes, David White

Sessions
- IC for Soils and Aggregate (3)
- IC for HMA (4)
- Implementation Strategies (2)

Knowledge Gaps
- Correlation Studies (73)
 - Different Soil Types (Granular, Cohesive, Recycled, Stabilized)
 - Different Roller Configuration (Smooth, Padfoot)
- Rapid in-situ w% determination (14)
- Modulus Based QC/QA (12)
- Understanding what IC-MVs are? Experience (10)
- Measurement Influence Depth? (7)
- Acceptable Non-Uniformity? (4)
- Trouble Shooting – Unusual Conditions, Machine Capabilities, and Limitations (3)
- Data Visualization (1)
- Benefits? (1)

IC for Soils and Aggregate

Equipment Advancements
- w% measurement on roller (29)
- Integrated solutions between multiple technologies (3D Design - 4D Construction) (18)
- Real-time data transfer/wireless (14)
- Retrofit systems (3)
- Repeatability/sensitivity of IC-MVs (2)
- Compaction diagnostics - red flag indicator (2)
- On-site geotechnical lab (2)
- Available machine configurations to match soil and site conditions (0)
- Machine/Technology maintenance differences (0)

Education/Technology Transfer
- Contractor/Field Engineer/Owner Training (52)
- Opportunity to promote good geotechnical practices (13)
- Cost/ROI (11):
 - Equipment Investment
 - Field Implementation
- Proven case histories to “sell” the technology (effectiveness to quality/efficiency) (9)
- Definitions of “IC” terminology (3)
- Operator/Inspector guide & Troubleshooting Manuals (3)
- Certification for contractor (1)
- Data amount and analysis (0)
Facilitator Report / Discussion

Tom Cackler, Ed Engle, Heath Gieselman, Lisa Rold, Douglas Townes, David White

Specifications and Standards

- Uniformity criteria (20)
- Selecting engineering parameters to measure (e.g., density, modulus, stiffness) (19)
- Consolidate IC-MVs to one unified parameter or report raw accelerometer data (11)
- How will w/s be specified? (5)
- Contractor/owner/researcher/manufacturer input for specification development (4)
- Establishing IC target values/test strip guidelines (1)
- Establish IC documentation standards (GPS and output parameters) (1)

Knowledge Gap

- Correlation of IC-MVs to engineering properties (39)
- Understanding IC-MV non-uniformity (mixture) (10)
- Measurement influence depth/adjustment (9)
- Key in-situ engineering parameters to measure (7)
- Mix design, binder grade, and aggregate on IC-MVs (5)
- Benefits of IC and reliability of current methods (5)
- Data integration (3)
- Link between IC-MVs and performance (4)
- Best applications for IC (e.g., overlays, HMA, etc.) (2)
- Applications for IC for QA (1)
- Modeling of compaction and cooling mat (1)

Equipment Advancements

- Involvement of roller train or just the breakdown roller (14)
- Influence of temperature (surface/interior), compaction time/speed, frequency/amplitude, and roller passes (6)
- Retrofit (5)
- Real-time data transfer (5)
- Mapping of underlying layers and existing pavements (3)
- Similarities between IC output (2)
- Corrective action after map (1)
- Compare mapping of IC and pneumatic roller (1)
- Integrated systems approach (1)
- What are public agency needs (0)
- In-situ compaction test equipment (0)

Education and Technology Transfer

- Demonstration projects, open houses, and hands-on opportunities (10)
- Documented successes (4)
- Establish framework for training contractor/owner (3)
- Economic/contractor benefits (2)
- Software compatibility (design, machine, analysis) (1)
- Harmonization/standardization of technology (1)
- Communicate opportunities for IC projects with interested parties (0)
- Pooled fund website, NCAT research (7), NCHRP, International conference (0)

Specifications and Standards

- Establishing QC and QA criteria and framework (9)
- End-result specifications (7)
- Keep it simple (5)
- Standard calibration method to establish IC and in-situ target values (3)
- Mapping as QC tool (2)
- Structure to minimize risk to contractor and agency – total risk management (2)
- Allow for contractor QC plans to accommodate variations in equipment (2)
- Goal is better performance and optimized cost (1)
- Better define IC (0) & Eliminate IC definitions (1)
- Begin w/ contractor to use – transition (0)
- Model similar w/Superpave end-result (0)
Facilitator Report / Discussion

Tom Cackler, Ed Engle, Heath Gieselman, Lisa Rold, Douglas Townes, David White

Implementation Strategies

• Correlation between roller MVs and soil properties (12)
• Research
 – Demonstration projects (11)
 – NCHRP synthesis of existing practices (7)
 – FHWA IC pooled fund (4)
• Improved design tools
 – What stiffness value? (9)
 – Relation to MEPDG parameters (8)
 – Design life/quality (7)
 – 3/4D design (5)

Implementation Strategies

• Education and Training
 – Data interpretation (29)
 – Common standards (17)
 – NHI training courses (5)
 – IC 101 (4)
 – Knowledge sharing by contractor (2)
• Equipment Advancements
 – Moisture sensors in real-time (13)
 – Padfoot compaction in cohesive soils (12)
 – Real-time data transfer/wireless (9)
 – Method of marking problem areas (6)

Implementation Strategies

• Specifications
 – Incentive or directive needed (3)
 – QC easier to implement (2)
 – QA development (1)
• Partnerships/Communication (4)

Top 10 Overriding Issues – All Sessions!

1. Need correlation studies (cohesive, stabilized, granular, HMA, etc.) (136)
2. Education/training materials and programs (112)
3. Moisture content (influence + measurement) (61)
4. Integrated design + real-time data transfer (57)
5. Case histories + demos + benefit + successes (48)
6. Engineering parameter to measure (density, modulus, stiffness)? (47)
7. Addressing non-uniformity (34)
8. Establishing QC/QA framework - statistically significant (28)
10. Promoting good geotechnical practices (13)

What Next?

Where we are going:
• Standardized and credible IC specifications inclusive of various IC measurement systems
• Widespread implementation of IC technologies
• High quality database of correlations
• Better understanding of roadway performance - what are key parameters?
• Innovative new sensor systems and intelligent solutions
• Several documented successes for cohesive/stabilized/ granular/HMA
• Compatible 3D electronic plans with improved integrated processes, efficiency and performance

Where we are going:
• Lack widely accepted IC specifications in U.S.
• Need education/training materials
• IC technologies provide documented benefits (smooth drum - granular)
• Great potential and some successes for cohesive and HMA
• Human IC network
• Increasing acceptance/GPS infrastructure for stakeless grading/machine guidance
• “Don’t know what we don’t know”
Facilitator Report / Discussion

Tom Cackler, Ed Engle, Heath Gieselman, Lisa Rold, Douglas Townes, David White

How?

Research, T², Education

Guiding Objectives:
✓ Build strong working relationships between public agencies, industry, and researchers to advance research priority and accelerate research implementation.
✓ Facilitate strategic pooling of funding for increased leverage and impact.
✓ Facilitate changes to specifications and policies that result in innovation, increased value to public, and sustainable practices.

What can you do?

- Participate in partnerships for IC research and information exchange regionally and nationally
- Be an advocate for IC implementation
- Contribute to problem statement development for NCHRP, TRB, FHWA, AASHTO, ASCE Committees
- Participate in IC conferences/studies and the annual Earthwork Workshop
- Apply for membership: EERC Scientific and Policy Advisory Council (35 members) – IC and other issues
- Stay connected: Subscribe to EERC Technical Bulletins, Tech Transfer Summaries, Technical Reports, Educational Videos, etc.

Thank you.
Breakout Sessions

On day two, there were nine breakout sessions covering three topic areas: “IC for Soils and Aggregate,” “IC for HMA,” and “Implementation Strategies.” “IC for Soils and Aggregate” was discussed by three groups. “IC for HMA” was discussed by four different groups. “Implementation Strategies” was discussed by two groups. A sign-up sheet was provided on day one to target 20 participants per group. Each group had a facilitator and recorder.

The outcomes from the breakout sessions were centered on developing a framework to move intelligent compaction forward into the mainstream of highway construction. Each group was asked to address their topic around the following questions:

- What are the existing knowledge gaps?
- What equipment advancements are needed?
- What educational/technology transfer needs exist?
- What standards/specifications and guidelines need to be developed?

After the groups generated a list of topics for each question, the list was prioritized through discussion and, in some cases, voting. The following is a summary of the findings of each group. For some sessions, (#) indicates number of votes given to a topic for prioritization.

IC for Soils and Aggregate 1—Heath Gieselman (Facilitator), Pavana Vennapusa (Recorder)

Knowledge Gaps

- Roller MVs in cohesive soils for both pad foot and smooth. (11)
- Intelligent compaction feedback control efficiency and effectiveness. (1)
- Increased moisture content information using simple techniques in field. (14)
- Relationships between roller outputs and soil properties. (10)
- Roller data overlaid on 3D project data. (1)

Equipment Advancements

- Moisture measurement by rollers. (11)
- Retrofitting costs vs. new costs. (3)
- Knowledge of best machine model/size depending on soil conditions. (0)
- Pre-design tool?
- Machine maintenance issues (higher costs?)

Educational/Technology Transfer

- Data amount and analysis.
- Contractor/operator and field engineer/owner training for IC. (12)
• Certification for contractor. (1)

• Proven case histories to “sell” the technology to the organization/contractor—quantitative information on efficiency of the technology. (9)

• Initial cost for contractor with using the technology.

• Implementation of technology without increasing the resources - total $$ savings ROI. (11)

Standards/Specifications and Guidelines

• What in situ measurement is needed for correlations? (5)

• Tolerance in specifications (as it relates to cost)—uniformity? (2)

• Control strip specifications—how to deal with highly variable material conditions, time to preparation. (1)

General

• Continue with current technology.

• IC draft specifications.

• Demonstration projects by state.

• Look for a simple project and show success.

• Proper project selection.

• Partnership with contractors by state.

• FHWA support on projects and support from university researchers.

IC for Soils and Aggregate 2—Ed Engle (Facilitator), John Puls (Recorder)

Knowledge Gaps

• Experience with technology (owner & contractor).

• Different technology by manufacturers, requirements for output, standard output by all manufacturers.

• Capabilities and limitations of operations: Response from sub-grade rather than base (but we pay for upper layers). May be an education issue. Can we identify expected stiffness values for given soils? Being able to adapt to real-world situations (expected vs. actual project soils). Site-specific achievements.

• Adopting stiffness level vs. moisture-density relationships—specifications changes?

• Ability to understand damping and mechanics for different materials—aggregates manufactured and soils natural. Lack of experience with cohesive soils in general. Need for “pre-investigation” prior to compaction. Timeframe for knowledge about soils—contractor. Variability in modulus/stiffness method.

• Defining important properties are required for a successful project: Relationship between
field measured and lab measured data. Quality control built into use of machine. Machine calibration—DOT or contractor operation? Machines to be calibrated on regular basis to ensure quality. Build reliability and confidence into the technology. Calibration standards for machines. Machine-specific parameters are proprietary. Correlation to parameters with which we are familiar.

- Identifying problem areas. How to determine corrective action? How do we measure this against the uniformity of the rest of the material consistently?
- Will stiffness actually replace density, or will it simply be used to correlate to expected density? Can we rely on it? What is more important: density or stiffness?
- How do you build reliability and repeatability into the technology to increase confidence level of the user?

Equipment Advancements

- Where does civil engineer come in to identify soils? Variability in soils and how they affect stiffness values. Understanding of what roller is doing, how soil is responding. Expected stiffness values?
- Standardize stiffness values for all entities. Need education and technology transfer.
- Moisture control measurements. Continuous measurements of moisture content to ensure quality.
- How do we approach the uniformity issue? Good or bad.
- Integrated solutions with regard to quantities: as-constructed quantities, provide data to designers and contractors, advantage to know what has been rolled vs. what hasn't, take time to run lab tests on this soil, cannot eliminate testing, but streamline it instead, make field/lab testing more efficient, mapping is a huge tool to be used for quality control, test spot selection (elimination and addition).
- Mapping prior to construction could be used for pre-construction risk analysis.
- Using MEPDG version for soils: sampling of soil, environmental conditions, and future traffic levels. Plug these into MEPDG and determine what stiffness you should have in the soil.

Educational/Technology Transfer

- Joint education between industry and owners. Agreement on specifications.
- Agreement between terminology (CMV, CCV, etc.) and units.
- Education program to be shared across all DOTs—national program.
- Listen to operators and learn from their experience.
- Opportunity to promote good geotechnical practices.
Standards/Specifications and Guidelines

- Other acceptance criteria in addition to stiffness?
- Document procedures for specifications.
- Development of a standard to characterize the technology: standard deviation values, comparing equipment. Need awhile to continuously monitor calibration of a given machine.
- How to set levels of quality (90%, etc.)?
- Speed consistency of machines—is it an issue for soils and aggregates?
- Two major broad geotechnical issues: (1) what the machines can tell us and (2) how do we connect the two?

General

- Stiffness replacing moisture density: Indices for moisture-density and stiffness? What methods do we have to measure moisture? How do we overcome these? Need fastest test possible. Replacing m-d relationship with stiffness, or adopting stiffness? Which stiffness are we monitoring—manufacturer (spring) or academic (modulus). What are we going to measure? How do we measure it? How do we develop acceptable criteria? Stiffness/Density. Machine value suitable for quality assurance?
- Don’t have stiffness testing/data for these soils. Machine settings, soils, equipment used for various projects. Challenges associated with stiffness—layer (lift) thickness vs. stiffness. Quantity of historical data? No idea of quality of historical data. Variability during course of a project and evaluating site conditions. Finite element analysis could give insight.
- Mapping and stiffness used to minimize testing. Challenge is accurate, quick moisture content measurements. How to get equipment to job site if not a bid item? How is data submitted? Printout. Software. Programs different for manufacturers? How does contractor bid this? Need to develop correlations between machine data and standard testing.
- How do we intend to use QC values in the QA system? How is acceptance determined? What should be the proper form of verification? If/Then statements. How do contractors know what to bid for QC items? Lump sum?

IC for Soils and Aggregate 3—Ed Engle (Facilitator),
Pavana Vennapusa (Recorder)

Knowledge Gaps

- Correlations for roller MVs to soil properties (moisture, density, and stiffness). Laboratory testing—different soil types, moisture contents, LTPP database—correlations between modulus and soil classification properties for about 4000 soils (1500 subgrade soils). Regression equations are not all that good. Lab vs. field issues. Repeatability of testing, effective of sample size, stiffness might not correlate well with density. Many groups should
be involved in research projects. Focus on field testing methods. Sensitivity analysis. Difficult to get agreement on what soil property should be correlated between different groups.

- Measurement influence depth.
- What do you consider as the depth you want to be measuring?
- Proper soil characteristics and behavior and how it relates to roller MVs.
- Bridging effects?
- Application of IC to different types of materials (natural and recycled materials).
- Cohesive soils.
- Influence of moisture changes with depth?
- How do we get target stiffness? What is a target value?
- Use of Vibratory IC system for unstable boundary conditions (e.g. shallow water table)?
- What is the benefit to contractors?

Equipment Advancements

- What does the roller give us? Need of real stiffness value.
- Specify the device type to check the roller data.
- Standardizing information from rollers.
- Real-time moisture sensing requirement (GPR, electrical resistivity).
- Repeatability of roller measurements—sensitivity analysis. What is the acceptable amount of variation?
- Goal-oriented compaction system (alarming the operator to stop compaction).
- Real-time data transfer.

Educational/Technology Transfer

- NCHRP Synthesis project on existing practices.
- NHI courses.
- Different levels of education: operator/contractor, field engineers/owner, specification writers.
- Demonstration projects and shadow projects. Variable soil conditions? Pick some projects that are simple. Money. Not enough variables available at existing project sites. All levels of training and education included. Willing partners and communication. Documentation of demonstration projects. Develop plans. Reasonable expectations (both short-term and long-term).
- Troubleshooting manuals.
Standards/Specifications and Guidelines

- Specify the device type to check the roller data.
- Specify speed limit and other requirements to be efficient during construction process. Other requirements of record: speed, frequency, amplitude, GPS location, lift thickness, stiffness measurement.
- Uniformity of response.
- Troubleshooting manuals. Who will pay for troubleshooting?
- Moisture content requirements depending on soil type.
- One number and have roller manufacturer figure out how to get that number.

IC for HMA 1—Tom Cackler (Facilitator), David White (Recorder)

Knowledge Gaps

- Meaningful data tied to performance. (1)
- Correlation of machine data to engineering properties (methodology). (7)
- What engineering properties should be measured? (4)
- How to deal with depth of IC data? (2)
- Effects of binder grade and aggregate on stiffness data. (2)
- Mixture non-uniformity impact. (1)
- Links system performance to IC data. (1)
- How to integrate data IC and existing measures?
- How does technology affect design?
- Identifying variability of IC results and where to draw line. (3)
- Can IC data be used for acceptance? (1)
- Understanding depth of influence and how to adjust.
- Method for establishing target values?
- Statistical analysis of reliability of current methods. (2)
- Modeling of compaction and cooling mat. (1)
- System for complete data integration. (3)
• Is IC better than current baseline?
• How much IC data, and what kinds are needed?

Equipment Advancements

• Mapping.
• Mapping underlying layers prior to compaction. (2)
• Corrective action after mapping. (1)
• Real-time data transfer.
• What do public agencies want?
• Uniform accepted and understand IC data. (2)
• In situ compaction test equipment?
• Verification of machine output.

Educational/Technology Transfer

• Inexperience gap.
• Framework for training. (2)
• QC framework/requirements.
• Software compatibility. (1)
• Hands-on opportunities. (2)

Standards/Specifications and Guidelines

• Goal is better performance and optimized cost. (1)
• Mapping as QC tool. (2)
• Moving to end-result specifications. (7)
• Structure to minimize risk to contractor and agency—total risk management. (2)
• Model similar w/ Superpave end-result.
• What are we going to put in specification?
• Don’t over complicate. (5)
• Define positional accuracy.
• Structure to get broad support.
• Define IC.
• Allow for mix advancement.
• Eliminate definitions. (1)
General

- FHWA IC project team to help implement IC in 13 states. Focus on four different materials. Experimental plan in place to move project forward.

- Mapping of the existing layers before asphalt construction. Opportunity to evaluate pavement layer system.

- Modeling of asphalt compaction to optimize compaction operations. Cooling.

- Mapping for QC—how to do this in uniform manner. How to specify such that all manufacturers are on level planning field.

- How can we use EED? Are there other tools that we need (nuclear data)? Electronic data integration. Real-time information.

- Hands-on opportunities.

- Huge inexperience gaps.

- Appropriateness of design. How is technology going to affect design?

- Why use density control if measuring modulus?

- How write specifications at high enough level such that contractors-industry-contractor…. performance/end result/warranty specification?

- 80% overlays. When doing overlays map first. Correct bad spots before paving. How do you fix existing before? Corrective action after mapping?

- Definitions may become a barrier to advancing practice.

- Need data to convince contractor to use the technology. Show contractor that data is meaningful.

- Years ago used IC HMA in Michigan. Documented everything…temperature, roller… hit it hot…hit it again. Use to optimize process…speed, amplitude, passes. How does stiffness relate to density vs. stiffness? Requirement for initial QC.

- Better performing pavement? Goal is better performance and optimized performance.

- Do we know what we don't know? For HMA—correlation of machine value to engineering properties. Are we measuring the correct engineering properties?

- Knowledge gap—mixture non-uniformity. Just because we can measure it, we need to understand the variability and figure out what is OK. It is a variable product. Even if reduce variability…different temperature during the day. How interpret results? What range of variability is acceptable? Leads to specification development.

- Contractor wants to reduce risk. Owners want better performance. Need IC data that is meaningful and we understand? Understand how much data we need. Just because we can collect, what do we really need? What kind of data?

- How IC applied to overlays versus new construction?
• Lot of data out there. Subbase affects testing. Exactly how do you know what you are getting from base? Depth influence issues. At what point to you stop to define what is really needed? How deal with depth of influence?

• Software…AutoCAD. Make work with something else? Education between designers and contractors and industry. Compatibility.

• Relationship to quality pavement. If does not improve quality what is point? Meaningful data tied to performance.

• Education standards. How will training and guidelines be handled? Framework for training.

• Data transfer. How get info rapidly? Cell phone issues (GPS). Real-time data transfer?

• Need to change vocabulary. Is density the right parameter to measure? Working with huge variables—crushing, weather, etc. Hope to have an averaging product. Risk involved. Eliminate risk to contractors. Structure to minimize risk to contractor and agency.

• Specs! How we get paid and how owner is comfortable. Need to get past nuclear density gauge. If IC machine works better process control. Owner gets past phobia of changing what they are measuring. Use IC measurement values for QA?

• Correlate between IC measurement values and specifications that are being asked for. How do we capture the methodology for correlation?

• Need specification and standardization of equipment. Can’t do this unless we know what we need to measure. Equipment dollars. Don’t want to invest $ if not going to be used in acceptance. End result specifications. Superpave…done on federal end otherwise each state going to do something different.

• Some DOTs don’t want warranty projects. Relation to IC.

• What about warm mix asphalt? Need specs to reflect mixture technologies.

• Affects of binder grade on stiffness results.

• Can’t have standardized framework. Somewhat standardized.

• Depth affects and area of influence under machine. As vector of drum changes measurement influence dept changes. Mn/DOT 1.5 inch layer. Need to know what you are on top of. Try not to over complicate this thing. Don’t really have a lot of data for HMA. Need to have practical amount of data. OK for research, but need to get to final result.

• Risk management. That’s where this comes from. Proof. How much data do we need? Enough to provide it to manage risk. Maybe we don’t need all passes and all data. Lower bonding costs. It has to last 10 years. You have proof along the way. Everyone has to agree on map as it covers the data.
• Identifying the affects of mixture non-uniformity on IC values?

• Accuracy? How accuracy is accurate enough. GPS? Millimeter precision with base station critical? Define tolerances and position accuracy.

• Define IC for HMA. Different between different machines.

• Using the field IC results to system behavior. Linking system performance to IC data.

• Methods for establishing target values.

• Verify machine IC results?

• Don’t get too complicated. If trying to sell new idea, easier if simple. Get more people on board.

• Format and output of data.

• System approach to data management. Info from batch plate, etc.

• Is IC better than conventional? Early evidence says yes, but need more baseline projects with success.

• Companion tests for asphalt. What about other tests for asphalt? How measure modulus? In situ companion test equipment.

• NCHRP 10-65. Out in the next month.

• What is important to public agencies in terms of output?

• Over confidence. Need solid statistical analysis as part of specification.

• Moving to end-result specifications: Complicated because of system issues. Contracting may not be suited to this approach for IC HMA? We know the performance design parameters such as strain at base of pavement layer…Roller operator needs to know if he is on it at right temperature. NPA has a program. How do we relate this information to agency? All of the above are tied together. What are the first generation IC specifications going to look like? Use a shadowing concept. Superpave projects decide that there would be projects…couple interstate, county, etc. with bid item for reimbursing contractor. How do we build confidence? Rapidly. No state ready to write specification. What does shadow concept measure? Make relationship between what IC can provide and what current known performance parameters are and current QC/QA protocols. What info is important to get from roller? Temperature, mapping, and modulus.

• First generation end-results shadow with temperature, mapping, stiffness, speed, frequency, amplitude (data set to capture). Keep the current acceptance criteria. Need to map underlying stiffness. Keep current acceptance criteria, shadow concept, current IC methods, temperature, mapping, stiffness data (map underlying support layer), speed, frequency, amplitude

• Correlation of machine data to engineering properties (methodology): Engineering properties (Density, temperature), Statistically valid plans, Different mix designs—overlay, warm mix, hot mix, different underlying ground stiffness conditions, Map all data? Current projects with Ham don’t necessarily include mapping. Need to move beyond volunteer effort to build these requirements into specifications.
• Don’t over complicate.
• What engr. properties should be measured?

IC for HMA 2—Lisa Rold (Facilitator), Paul Wiegand (Recorder)

Educational/Technology Transfer

• Up to now, industry has driven. Contractors and equipment folks are key.
• If we go to QA, agencies will need to be more involved.
• Comparative data to ensure that the contractors can make incentives.
• How do the mix characteristics impact the results?
• Does a brand of roller impact the results?
• Develop coordination with equipment manufacturers.
• Identify whether all equipment needs the IC or just isolated pieces.
• Is wireless communication in real-time transmitted over the internet an important item to include?
• Determine method of determining mat uniformity and measurable criteria.
• Hands on demonstrations for contractors, not workshop format.
• Use pool fund website to get info out.
• Emphasize the value to both contractors and agencies in price adjustments and quality of pavement.
• Share the knowledge.

General

• Concern over costs—what are they? Costs vary. GPS: $20,000; Base station: $15,000. IC product costs: $25,000
• Can IC systems be adapted to older equipment? May be difficult because of the complexity of the drum equipment.
• Consideration must be given to vandalism and weatherproofing.
• Differences in process and quality of measurements make it difficult to write a spec. Could this be handled by using test strips? Stiffness connection to density and permeability is a question.
• Some states are writing permeability specs.
• Need to develop that connection from machine information to good pavement.
• If only used for QC, no specifications are needed. Contractor use only, but they must see value
• Each project must be run as an isolated system related to density and permeability. Do test strip evaluation prior to the project so cores and other verification methods can be used.
Stiffness and roller speed measurements are important, in addition to temp and number of passes. Speed especially important to DOT folks.

Should all rollers have the equipment? DOT reps said yes in order to verify the quality.

Can the ultimate density be predicted based on the breakdown roller activity? That is the assumption since the finish roller does not vibrate.

Temperature is critical as it relates to final roller—that is a gap now. Monitoring of core temperature on all rollers will tell when to start and stop rolling.

Will IC rollers be able to identify mix segregation since that will impact density? Equipment people say no.

What information is of greatest value to operator? Stiffness corrected to core temperature.

What is the program needed to make it a QA for DOTs? What is the correlation from stiffness to density? Research has developed one.

Can there be an algorithm developing density output—yes say equipment people but only on vibratory equipment.

Common/standard language related to machine language could be valuable in writing spec. Also universal file format for machine output.

Current acceptance is based on density of cores (primarily) or nuclear density gauge.

Are the agencies ready to pay for the use of IC equipment as a bid item to jump start use? Some DOT, will others not.

Concern over frequency of calibration for the equipment? Equipment people say that the accelerometer annually. Also that is taken into account as the job setup with the project mix calibration.

Will agencies start to require IC? The FHWA pooled fund project will establish baseline information. Minnesota has required it for earthwork, not HMA.

Where to go—focus on QC initially to get data then for potentially QA. Must identify benefits to contractors initially.

Where is the best place in the construction process for IC? Breakdown roller gets about 90% of the density.

Internet transfer of information is a possibility.

QC elements: speed, modulus, passes, temperature, density, accuracy of mapping (GPS) — lateral is more critical than longitudinal

Questions: Take IC from QC to QA? Correlation between field info and performance values. Uniform reporting system across equipment. For instance, currently accept contractor’s smoothness traces.

How do we add the incentive to use IC? Have IC as a pay item? Recognize better pavement value from mat uniformity and lack of coring.
Research priorities (in order of voting). Identify whether all equipment needs the IC or just isolated pieces of the roller train. Is it possible to incorporate rolling weight deflectometer? How do the mix variables and characteristics impact the results? Databases developed by agencies showing what works and what doesn’t. Develop a measure of mat uniformity. Develop system to transmit IC data in real time over the internet to servers or laptops. Develop retrofit equipment for existing rollers. Develop coordination between equipment manufacturers related to uniform language. Correlate IC with long-term pavement performance. Not just material testing, but modifying the complete construction process/operation.

IC for HMA 3—Tom Cackler (Facilitator), David White (Recorder)

Knowledge Gaps
- What is ultimate goal in field, and how does it relate to current acceptance. (3)
- Validate applicability as QA tool. (1)
- Non-correlations of IC data to density. (7)
- Correlation of field IC data to design parameters (combine above).
- Is measuring stiffness important. (1)
- What do we measure that relates to quality and life of road? (2)
- How do we use IC data considering depth of influence? (7)
- Where is IC best used. (1)
- Where is IC best used—size, base conditions, overlays, etc. (1)

Equipment Advancements
- Correlate surface temp to internal temperature including time, internal temp, roller passes. (6)
- How to incorporate to existing equipment. (1)
- Can agencies use IC to evaluate existing pavements? (1)

Educational/Technology Transfer
- Agency and contractor IC 101. (1)
- Communicate opportunities with IC.
- Harmonization of definitions and technology. (1)
- Economic benefits. (2)
- Benefits from contractor’s perspective (combine above).

Standards/Specifications and Guidelines
- Standard calibration method. (3)
- Begin w/ contractor to use—transition.
• Allow for contractor QC plans to accommodate variations in equipment. (2)
• What project size to use.

General
• Mat temperature—get at internal temperature from surface temperature. Gives the roller operator more flexibility. Time + temperature + number of passes.
• Training for contractors/operators/state DOT people—broad-based education. “IC 101”.
• Roll immediately after construction at cooler temperature. Useful for future rehabilitation?
• What do we ultimately want to measure in the field? What is our ultimately goal in the field. How do we use the information in conjunction with what we are doing now?
• What are we trying to do? Under education—show me some projects with respect to correlations? More correlations studies. Communicate opportunities w/ IC.
• Depth of influence issues. 1–3m? How do I restrict to thin lifts.
• Lots of milling and resurfacing. What do you hold contractor responsible to?
• Any info available now…large paving contractors using…mat temperature? Want benefit-cost analysis.
• Can IC be used as a QA tool?
• Standard calibration method.
• Where is IC best used?
• Appears that there is not a good correlation between stiffness and density? Go way you trust IC alone. Maybe mapping is the best tool.
• Allow either or. May take 20 years to implement. What about existing equipment? Begin with contractor option to use—transition.
• Contractor submits QC plan for review. 30 days to review. Allows it to be flexible. If they don’t follow their plan then not pass.
• How does this relate back to the things we designed for? Are we looking at the right parameters? Relation to design parameters.
• How does subgrade affect HMA design?
• Is there a point where this is not appropriate (e.g., 2 inches of HMA of concrete overlay?) Need to select appropriate technology.
• How will we get measurements that go over state lines? Will specifications be recognized state to state so contractor’s equipment is widely useful?
• Custom specifications for each manufacturer? Some flexibility to contractor.
• Use IC to identify areas for strengthening.
• Size a project an issue? Minimum size to require?
• It would be interesting to get inspector input. Compare the inspector’s observations with IC mapping capability.

• How do adjust HMA for pre-existing base conditions?

• Do the readings relate to how long the road last? Need to know what to measure to relate to the quality and life/performance of road.

• Economic of IC? If show that it has a financial advantage, then going to be a lot more popular.

• How to judge the quality the HMA layer, especially considering variability of underlying layers. Is measuring stiffness for HMA important?

• Need to harmonize—dictionary of terms. This is how the parameters relate.

• Doing it before the fact. Roll in low-vibe and combine with GPR to get existing info.

• New technology with great opportunity. Can add IC to existing equipment? What is the key—temperature or roller operations. Can you upgrade existing rollers?

IC for HMA 4—Lisa Rold (Facilitator), Paul Wiegand (Recorder)

Knowledge Gaps

• Research/Gaps (in order of voting): Develop correlation of IC technology with stiffness, density, modulus. For acceptance criteria use mapping of existing pavement and % improvement rather than smoothness. Use method spec vs. results spec. Determine the flexibility of IC relating to construction variability related to mix design and type of roller use.

Educational/Technology Transfer

• Industry based for contractors is best because it is targeted to the equipment and what is important.

• Demonstration projects/open house information posted on the pooled fund website (www.intelligentcompaction.com).

General

• Need incentive for contractors to get involved.

• How do you write a spec when knowledge isn't there?

• Add $$ to bids to get contractors to make the investment in equipment.

• Compare real field data and IC data.

• Measure what is important, not necessarily what has been measured in the past.

• Agencies need to define the parameters to develop uniformity across equipment.

• Standard method of implementing change must not be used. Work together between agencies and contractors.
• Break down implementation into steps of mapping (number of passes); temperature; and then stiffness.
• Shadow existing density verification work with IC to show the correlation and use a proof testing.
• Iowa contractors like to use pneumatic rollers to improve density, and it is important to determine the impact of pneumatic rollers on stiffness.
• Roller patterns and types of rollers will vary according to states and mix designs. For instance, roller sizes vary, use of pneumatic rollers, use of vibratory or static, etc.
• Roller speeds will impact stiffness results, although generally stiffness is mix dependent.
• Does stiffness from design and lab correlate with field measured stiffness across machines?
• What methods are best to relate machine information to stiffness? Different equipment developers use different methods.
• IC identifies weak spots that can be worked before the final paving operation. Also could be used to determine weak spots before paving.
• Use finish roller at low vibration to verify final results.
• Concern over differences in information provided by different pieces of equipment starting with the quality of the accelerometer and the algorithms used to convert the data into stiffness.
• Manufacturers would like to be told of the design characteristics (stiffness, modulus of elasticity, etc.) to target.
• Mapping, temperature, stiffness (density) are major issues to be included in IC.
• Manufacturing groups are the ones that are currently pushing the technology of IC. If it gets to QA, the agencies must get involved.
• Activities with IC must be flexible enough to accept changing technologies, such as mix (warm mix asphalt) and others.
• Is there a mechanism to get IC output from a pneumatic roller?

Implementation Strategies 1—Douglas Townes (Facilitator), John Puls (Recorder)

Knowledge Gaps
• Collaborative design between contractor and designer. (2)
• Need a better tool for measuring existing conditions; pre-design. (6)
• Which standard to use? MEPDG. What are IC measurements going to be? (8)
• Equating measurement tool to design life/quality. (7)
• Is there a better way to measure compaction than what we already know? (2)
• 3/4D design lacking. (5)
• What stiffness values are we shooting for? How consistent is consistent? What are the target values? Stiffness/uniformity. Clay soils have more unknowns than granular soils. (9)
• IC machine data acceptance.
• IC machine data trust. (4)

Equipment Advancements
• Moisture sensors in real-time. (13)
• GPS communication between manufacturers. (2)
• Sharing data wirelessly. Wireless real-time communication between operator and inspector/contractor management (office). Sharing operator data via wireless to other operators/foremen (portable) (9)
• Method of marking problem areas. (6)
• Padfoot compaction in cohesive soils. Measurement tool for cohesive soils is needed. (12)

Educational/Technology Transfer
• Construction inspector training, design staff training, DOT materials group (training on acceptance), upper management (DOT), operator through owner education (contractor), vendors understanding of DOT role in the process.
• Knowledge of different available equipments.
• Learning to interpret data and work with contractor. (14)
• Acceptance standards. (15)
• Data processing/storage training. (1)
• Meaningful pre-design data to contractor (geotechnical data). (2)
• Soil identification (physical). (6)
• Interpretation raw data to meet state specifications: How to correct a failure? Critical thinking for corrective actions tying experience-based knowledge to IC technology. (9)
• Sharing of general knowledge/information. (1)
• Cross-communication between manufacturers. (1)
• Common official universal standard and terminology. (11)

Standards/Specifications and Guidelines
• Standardizing data formats. Data to the contractor and data coming back from contractor.
• Deciding what to measure: How often? How accurately?
• Placing more risk onto contractor: Low control over on-site soils, performance-based specs.
• Specifications must evolve slowly.
• Uniformity is more important than absolute measurements.
• Would you (contractor) buy IC based on end-result specification?
• Variability in IC values determined by site conditions: Before and after rain: Will contractor be paid to re-do work? Contract end date does not change.
• Incentives for contractor. Incentives for increase quality.
• DOT: Writing incentives so that it’s profitable for contractor to increase quality. Minimum level for compaction value and a bandwidth for uniformity. Higher incentives for better uniformity.

General
• Challenges: Getting contractors on board to use IC on HMA.
• What’s in it for the taxpayer? Road lasts longer, safety, smoother, higher quality, decrease in lane-closure time, savings $.
• What’s in it for the agency? Inspection costs, complete coverage, risk management, 100% coverage on inspection, less reliance on nuclear density measurements, public safety, facilitate change in technology, decreased maintenance costs, longer lasting pavements, better designs, construction costs,
• What’s in it for the contractor? Compliance documentation, potential to increase productivity, employees have a career instead of a job, training, specialization, pride, increased communication, increased cross-training opportunities, increases responsibility of roller operator, potential for increased incentives, and data gives worker feedback for a good job.
• New industry: major financial companies can get into insurance of roads. Differing premiums. Insurance rather than warranty: potential for increased sales.
• Design tools, education, training and specifications.

Implementation Strategies 2—Heath Gieselman (Facilitator), Jerod Gross (Recorder)

Knowledge Gaps
• Contractor motivation/incentive. (1)
• Communication from design through construction (plans and specs).
• Little experience with technology. (7)
• Standardization of industry for QA (long term). (5)
• Correlation between machine values and actual properties. (12)
• Proven technology.
• Upgrades in machinery and software. (2)
• Need to identify knowledge gaps in asphalt and soils separately. (6)
• Definition of equipment terminology and defining accuracy.
• What is our goal? QA or QC?
• Communication with industry of implementation plan.
• Cost of training.
• Integration of technology.
• Contractors should share knowledge.
• Translation of data to determine acceptance.
• Proper site selection for demo projects.
• Define acceptance limits.

Equipment Advancements
• Need for rollers to measure all properties including internal temperatures. (1)
• Needs to be user friendly & ergonomics. (4)
• Initial cost.

Educational/Technology Transfer
• Phased implementation of IC. (3)
• Document design/build projects.
• Contractors should share knowledge.
• Advertise IC through select projects. (2)

Standards/Specifications and Guidelines
• Incentive or directive needed. (3)
• QC easier to implement. (2)
• QA requires development of specs. (1)
• IC not specified but is an advantage to contractors. (2)
• Dissimilarity of roller outputs for soil and asphalt. (6)
• Standardize data output.
Facilitator Report—Summary

The results of the breakout sessions were analyzed to identify the priorities for advancement in the outcome areas of “Knowledge Gaps,” “Equipment Advancements,” “Educational/Technology Transfer,” and “Standards/Specifications and Guidelines” for each of the topics areas: “IC for Soil and HMA,” “IC for HMA,” and “Implementation Strategies.” Prioritization was determined based on a detailed review of the recorder notes, finding common topics among sessions, and summarizing the participant votes. There were two levels of analysis of the results: (1) prioritize the results for each topic area, and (2) develop a broader top 10 list of key issues for needs and accelerating implementation of IC technologies.

The top priorities for each breakout session topic are summarized in the following:

IC for Soils and Aggregate

Knowledge Gaps
1. Correlation Studies: Different Soil Types (Granular, Cohesive, Recycled, Stabilized) and different Roller Configuration (Smooth, Padfoot) (73)
2. Rapid in situ w(%) determination (14)
3. Modulus-based QC/QA (12)
4. Understanding what IC-MVs are? Experience (10)
5. Measurement influence depth? (7)
6. Acceptable non-uniformity? (4)
7. Trouble shooting—unusual conditions, machine capabilities, and limitations. (3)
8. Data visualization. (1)
9. Benefits? (1)

Equipment Advancements
1. w(%) measurement on roller. (29)
2. Integrated solutions between multiple technologies (3D Design - 4D Construction). (18)
3. Real-time data transfer/wireless. (14)
4. Retrofit systems. (3)
5. Repeatability/sensitivity of IC-MVs. (2)
6. Compaction diagnosticsred—flag indicator. (2)
7. On-site geotechnical lab. (2)

Educational/Technology Transfer
1. Contractor/field engineer/owner training. (52)
2. Opportunity to promote good geotechnical practices. (13)
3. Cost/ROI. (11)
4. Equipment investment.
5. Field implementation.
6. Proven case histories to “sell” the technology (effectiveness to quality/efficiency). (9)
7. Definitions of IC terminology. (3)
8. Operator/inspector guide & troubleshooting manuals. (3)
9. Certification for contractor. (1)

Standards/Specifications and Guidelines
1. Uniformity criteria. (20)
2. Selecting engineering parameters to measure (e.g. density, modulus, stiffness). (19)
3. Consolidate IC-MVs to one unified parameter or report raw accelerometer data. (11)
4. How will w(%) be specified? (5)
5. Contractor/owner/researcher/manufacturer input for specification development. (4)
6. Establishing IC target values/test strip guidelines. (1)
7. Establish IC documentation standards (GPS and output parameters). (1)

IC for HMA

Knowledge Gaps
1. Correlation of IC-MVs to engineering properties. (39)
2. Understanding IC-MV non-uniformity (mixture). (10)
3. Measurement influence depth/adjustment. (9)
4. Key in situ engineering parameters to measure. (7)
5. Mix design, binder grade, and aggregate on IC-MVs. (5)
7. Data integration. (3)
8. Link between IC-MVs and performance. (4)
9. Best applications for IC (e.g., overlays, HMA). (2)
10. Applications for IC for QA. (1)
11. Modeling of compaction and cooling mat. (1)

Equipment Advancements
1. Involvement of roller train or just the breakdown roller. (14)
2. Influence of temperature (surface/internal), compaction time/speed, frequency/amplitude, and roller passes. (6)
3. Retrofit. (5)
4. Real-time data transfer. (5)
5. Mapping of underlying layers and existing pavements. (3)
6. Similarities between IC output. (2)
7. Corrective action after map. (1)
8. Compare mapping of IC and pneumatic roller. (1)
9. Integrated systems approach. (1)

Educational/Technology Transfer
1. Demonstration projects, open houses, and hands-on opportunities. (10)
2. Documented successes. (4)
3. Establish framework for training contractor/owner. (3)
4. Economic/contractor benefits. (2)
5. Software compatibility (design, machine, analysis). (1)
6. Harmonization/standardization of technology. (1)

Standards/Specifications and Guidelines
1. Establishing QC and QA criteria and framework. (9)
2. End-result specifications. (7)
3. Keep it simple. (5)
4. Standard calibration method to establish IC and in situ target values. (3)
5. Mapping as QC tool. (2)
6. Structure to minimize risk to contractor and agency—total risk management. (2)
7. Allow for contractor QC plans to accommodate variations in equipment. (2)
8. Goal is better performance and optimized cost. (1)
9. Better define IC (0) & Eliminate IC definitions. (1)

Implementation Strategies

Knowledge Gaps
1. Correlation between roller MVs and soil properties. (12)
2. Demonstration projects. (11)
3. What stiffness value? (9)
4. Relation to MEPDG parameters. (8)
5. NCHRP synthesis of existing practices. (7)
6. Design life/quality. (7)
7. 3/4D design. (5)
8. FHWA IC pooled fund. (4)

Equipment Advancements
1. Moisture sensors in real-time. (13)
2. Padfoot compaction in cohesive soils. (12)
3. Real-time data transfer/wireless. (9)
4. Method of marking problem areas. (6)
Panel Discussion

A panel discussion was held on day three for one and a half hours and moderated by Max Grogg. Panel members included Chris Connolly, Lee Gallivan, Khalil Maalouf, Dean Potts, John Smythe, Stan Rakowski, and David White. The aim of discussion was to reflect on the outcomes determined from the breakout sessions and what was learned for the workshop that may have changed perspectives on intelligent compaction technology. Questions from the audience followed on specification needs and new technology developments. The discussion points are divided into four categories: reaction to breakout sessions, new perspectives, specifications, and technology developments. Each of these categories is summarized below.

Reaction to Breakout Sessions

- Facilitators boiled information down to a few keys items that should be the focus of research.
- Exciting from manufacturer perspective to see high level of interest.
- Established a good baseline for technology and current state of implementation.
- Lots of opportunities ahead for implementation of IC and 3D/4D GPS technologies.

New Perspectives

- Significant level of interest from state DOTs.
- IC technology is further along than previous thought.
- Implementation should build on existing knowledge.
- IC is not going to change fundamental properties of soil (moisture content) or HMA (temperature, gradation). Therefore, can’t replace good geotechnical and materials engineering.
- Tremendous potential for IC in QC applications and may become QA tool in the future, but will require courage and effort to change.

Specifications

- A question that still needs to be answered - what are the important properties to measures?
- Some specifications are being written as part of ongoing research projects, and Mn/DOT has implemented a specification(s) on actual projects for soils and aggregates.
- Several European specifications exist for continuous compaction control (CCC).
- IC specifications may eliminate unneeded testing by the QA agency.
- Machine specifications are needed.
- During early implementation, having some flexibility to revise the specification during the course of the project to make improvements may be an effective strategy to faster implementation.
- Contractors and state DOTs need to be educated on how IC can be used as a QC/QA tool.
- Calibration of the machine IC values to spot test measurements needs to be defined.
With respect to IC standardization, need to allow the manufacturers to be innovative and not close the box too quickly with standardization.

Focus the specification around rapid detection of road problems.

Premature failure like HMA segregation is not a condition that IC measurement will necessarily detect, and thus inspectors and independent spot measurements will always be needed.

The contractors need to be engaged in this process to determine what level of risk is being shifted with IC.

Technology Development

- What are next steps to develop onboard moisture and temperature sensors?

- Resolution of GPS-based maps need to be relatively accurate and precise to correlate with in situ spot test measurements.

- New sensors are needed to measure soil moisture content and are an area of ongoing research.

- Asphalt surface temperature is relatively easy to measure; the critical mat temperature is much more difficult to determine but good goal and challenge.

- Surface temperature can vary widely; therefore, internal mat temperature is needed.

- There are many factors that affect mat temperature, including several environmental factors, and it is not a trivial problem to solve.

- Core temperature could be measured with probe system. Heat loss occurs through the top and bottom of the mat is an issue.

- Surface temperature combined with analytical model and onboard computer calculations may be useful. Some experimental research is underway with this effort to measure core mat temperature.

- Manufacturers cannot solve all the issues.

- Collaborations and partnership are needed to identify critical needs and move technology implementation forward.

Summarizing the panel discussion comments, there are four central discussion points that were condensed as shown in Table 3.

Table 3. Summary of common themes from panel discussion

<table>
<thead>
<tr>
<th>Common Themes from Panel Discussion Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. High level of interest from the state DOTs in further studying opportunities to implement IC.</td>
</tr>
<tr>
<td>2. Implementation strategies need to build on existing information and past research.</td>
</tr>
<tr>
<td>3. Specifications for IC and in situ testing should not restrict manufacturer/equipment developer innovations.</td>
</tr>
<tr>
<td>4. Contractor and state DOT field personnel and engineers need educational materials for IC and in situ QC/QA testing.</td>
</tr>
</tbody>
</table>
Group Exercise to Identify Implementation Strategies

Following the panel discussion, the audience was given instructions to break up into seven- to ten-person groups representing the contractor, manufacturer, or state DOT perspective. There were two groups for each category. Each group had representatives from the three positions. The groups were charged with looking five years into the future and brainstorming reasons why implementation of IC was successful. The question posed to each group was:

What specifically did you do to implement intelligent compaction technologies on projects, and why were you successful?

Each group designated a leader to present the results to the audience after a 20-minute brainstorming session. The groups’ comments are summarized below by category.

Contractor Perspective

- Became more aware of IC technologies.
- Completed IC projects.
- Contributed to standardizing IC and it becomes part of normal operations.
- 30% of state DOTs now use IC.
- IC roller operators become certified.
- IC became common practice with the benefits being realized by documenting savings (no rework or overwork and fuel savings).
- Reduced risk and increased confidence in results and better process control.
- Developed a common language with state DOTs such that IC is accepted and understood.
- Further developed electronic plans implementation.
- Feel comfortable with IC measurements and eliminated barriers with a research program.

Manufacturer Perspective

- Soil moisture content measurement system was developed.
- HMA core map temperature measurement/analysis was solved.
- Common software was developed that meets the needs of the IC roller operator and state DOT inspectors.
- The roller IC computer interface was improved.
- Successful marketing.
- Collected feedback from owners and agencies to discuss issues and what is possible.
- Helped promote research and partnerships.
- Selected high profile demonstration projects.
- Listened to needs of state DOTs and contractors.
IC certification over the winter months was developed as a joint venture between academia/state DOT/AGC.

State Agency Perspective

- IC was implemented early on projects with the right people, right project conditions, and reasonable cost.
- IC projects demonstrate that the final products are more consistent, there are less maintenance problems, reduced construction costs, and less routine inspection testing.
- More QC/QA information exchanging during the construction process.
- IC education was significantly improved.
- The top 10 list of research needs identified from this workshop were implemented.
- Reduced number of claims.
- DOT became better organized with more open communication.
- Encouraged participation from contractors/AGC/industry during the process of implementation of IC.
- Let several IC demonstration projects and partnered with successful contractors, university researchers to collect and analyze data.
- Clearly showed the benefits of IC measurements for QC.

Some common themes between the groups were identified as key implementation strategies as shown in Table 4.

Table 4. Summary of common themes from the group implementation strategy session

<table>
<thead>
<tr>
<th>Common Themes from Group Implementation Strategy Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Develop IC training and certification program.</td>
</tr>
<tr>
<td>2. Demonstrate benefits of IC through demonstration projects.</td>
</tr>
<tr>
<td>3. Promote partnership as key strategy to implementation.</td>
</tr>
</tbody>
</table>
Outcomes

The key outcomes from this workshop were as follows:

1. Technical information exchange.
2. Prioritized lists of knowledge gaps, educational/technology transfer needs, specification and standards, and implementation strategies for IC for soil and aggregate and HMA.
3. A list of the top 10 overriding issues was developed that cut across the various IC technologies and materials.
4. Establishment of a network of people interested in partnership and implementation of IC technologies, specifications, and new developments with in situ testing.
5. Plans for a follow-up workshop to explore further IC technologies, in situ testing alternatives, educational/training program, and other earthwork technological advancements.
Next Steps

The IC workshop provided a baseline for stakeholders to provide input on current state of the practice/technology and next steps in terms of research and educational priorities and implementation strategies. At the conclusion of the workshop, a discussion centered on understanding where we are and where we are going. Table 5 summarizes some of the key points.

Table 5. Summary of key points

<table>
<thead>
<tr>
<th>Where we are:</th>
<th>Where we are going:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Lack widely accepted IC specifications in U.S.</td>
<td>• Standardized and credible IC specifications inclusive of various IC measurement systems</td>
</tr>
<tr>
<td>• Need education/training materials</td>
<td>• Widespread implementation of IC technologies</td>
</tr>
<tr>
<td>• Innovative IC and in situ testing equipment</td>
<td>• High quality database of correlations</td>
</tr>
<tr>
<td>• IC technologies provide documented benefits (smooth drum - granular)</td>
<td>• Several documented successes for cohesive/stabilized/granular/HMA</td>
</tr>
<tr>
<td>• Great potential and some limited successes for cohesive and HMA</td>
<td>• Better understanding of roadway performance - what are key parameters?</td>
</tr>
<tr>
<td>• Poor database development for IC projects and case histories</td>
<td>• Innovative new sensor systems and intelligent solutions</td>
</tr>
<tr>
<td>• Initiated human IC network</td>
<td>• Integrated and compatible 3D electronic plans with improved processes, efficiency and performance</td>
</tr>
<tr>
<td>• Increasing acceptance/GPS infrastructure for stakeless grading/machine guidance</td>
<td>• Real-time wireless data sharing</td>
</tr>
<tr>
<td>• “Don’t know what we don’t know”</td>
<td>• Enhanced archival and visualization software</td>
</tr>
<tr>
<td></td>
<td>• Improved analytical models of machine-ground interactions</td>
</tr>
</tbody>
</table>

To move from the current practice and knowledge base several key strategies were considered and are listed in Table 6.

Table 6. Strategies for moving forward

- Participate in partnerships for IC research and information exchange regionally and nationally
- Be an advocate for IC implementation
- Contribute to problem statement development for NCHRP, TRB, FHWA, AASHTO, ASCE Committees
- Participate in IC conferences/studies and the annual EERC Workshop
- Participate on EERC Scientific and Policy Advisory Council (35 members) – IC and other issues
- Stay connected: Subscribe to EERC Technical Bulletins, Tech Transfer Summaries, Technical Reports, Educational Videos, etc. (www.intelligentcompaction.com).
- Develop a comprehensive and strategic IC road map for research and educational/technology transfer
Although with many of these strategies it is clear how to move forward, developing a comprehensive road map for implementation of IC technology is a strategy that will require further input from many stakeholders, brainstorming events, problem statement identification, and research action plan development. Results from this workshop, however, provided significant information to outline a preliminary road map that can serve as a starting point for further discussions and assessment.

The vision for the road map is to identify and prioritize action items that accelerate and effectively implement IC technologies into earthwork and HMA construction practices. Coupled with the IC technologies are advancements with in situ testing technologies, data analysis and analytical models to better understand performance of geotechnical systems supported by compacted fill, software and wireless data transfer, GPS and 3D digital plan integration, new specification development, and risk assessment. What follows in Table 7 is a preliminary road map for implementation of IC technology based on information derived from the workshop sessions and the author’s viewpoint.

Table 7. IC road map research and educational elements

<table>
<thead>
<tr>
<th>IC Road Map Research and Educational Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Intelligent Compaction Research Database. This research element would define IC project database input parameters and generate web-based input protocols with common format and data mining capabilities. This element creates the vehicle for state DOTs to input and share data and an archival element. In addition to data management/sharing, results should provide an option for assessment of effectiveness of project results. Over the long term the database should be supplemented with pavement performance information. It is important for the contractor and state agencies to have standard guidelines and a single source for the most recent information. Information generated from this research element will contribute to research elements 2 through 5.</td>
</tr>
<tr>
<td>2. Intelligent Compaction and In Situ Correlation Studies. This research element will develop field investigation protocols for conducting detailed correlation studies between various IC measurement values and various in situ testing techniques for earth materials and HMA. Standard protocols will ensure complete and reliable data collection and analysis. Machine operations (speed, frequency, vibration amplitude) and detailed measurements of ground conditions will be required for a wide range of conditions. A database and methods for establishing IC target values will be the outcome of this study. Information generated from this research element will contribute to research element 1, 4, and 5.</td>
</tr>
<tr>
<td>3. Project Scale Demonstration Case Histories. The product from this research element will be documented experiences and results from selected project level case histories for a range of materials, site conditions, and locations across the United States. Input from contractor and state agencies should further address implementation strategies and needed educational/technology transfer needs. Conclusive results with respect to benefits of IC technology should be reported and analyzed. Information from this research element will be integrated into research element 1, 4, and 5.</td>
</tr>
<tr>
<td>4. Intelligent Compaction Specifications. This research element will result in several specifications encompassing method, end-result, and performance-related options. This work should build on the work conducted by various state DOTs and from ongoing research as part of NCHRP 21-09 and the ongoing FHWA IC Pooled Fund Study 954.</td>
</tr>
</tbody>
</table>
| 5. Educational Program/Certification Program. This educational element will be the driver behind IC technology and specification implementation. Materials generated for this element should include a broadly accepted and integrated certification program than can be
delivered through short courses and via the web for rapid training needs. Operator/inspector
guidebook and troubleshooting manuals should be developed. The educational programs
need to provide clear and concise information to contractors and state DOT field person-
nel and engineers. A potential outcome of this element would be materials for NHI training
courses.

6. Understanding Roller Measurement Influence Depth. Potential products of this research
element include improved understanding of roller operations, roller selection, interpretation
of roller measurement values, better field compaction problem diagnostics, selection of in
situ QA testing methods, and development of analytical models that relate to mechanistic
performance parameter values. This element represents a major hurdle for linking IC mea-
surement values to traditional in situ test measurements.

7. IC Technology Advancements and Innovations. Potential outcomes of this research
element include development of improved IC measurement systems, addition of new sensor systems
such as moisture content and mat core temperature, new onboard data analysis and visu-
alization tools, and integrated wireless data transfer and archival analysis. It is envisioned
that much of this research will be incremental and several sub-elements will need to be
developed.

8. In situ Testing Advancements and Mechanistic Based QC/QA. This research element will
result in new in situ testing equipment and testing plans that target measurement of per-
formance related parameter values including strength and modulus. This approach lays the
groundwork for better understanding the relationships between the characteristics of the
geo-materials used in construction and the long-term performance of the system.

9. Data Management and Analysis. The data generated from IC compaction operations is 100+
times more than tradition compaction QC/QA operations and presents new challenges. The
research element should focus on data analysis, visualization, management, and be based on
a statistically reliable framework that provides useful information to assist with the construc-
tion process control. This research element is cross cutting with research elements 1, 2, 3, 5, 7,
and 8.

10. Understanding Impact of Non-uniformity of Performance. This track will investigate rela-
tionships between compaction non-uniformity and performance/service life of infrastructure
systems—specifically pavement systems. Design of pavements is primarily based on average
values, whereas failure conditions are affected by extreme values and spatial variations. The
results of the research element should be linked to MEPDG input parameters. Much needs to
be learned about spatial variability for earth materials and HMA and the impact on system
performance. This element is cross cutting with research elements 4, 5, and 9.

The research elements above represent a first step in developing a formal research road map for
implementation of IC technologies. Additional steps beyond fine-tuning the research elements
will be developing an integrated research management plan, seeking peer review, establishing
a schedule, and identifying organizations, contractors, and equipment manufacturers that
want to partner and leverage funding and human resources to move the program forward. The
Earthworks Engineering Research Center (EERC) Scientific and Policy Advisory Council (35
members representing government agencies, industry, and researchers) is one entity that can
contribute to provide peer review and management of this effort. The council membership was
discussed at the workshop, and the membership is being identified. Follow-up correspondence
to the workshop attendees will transpire with respect to this report, the council, and the 2009
annual EERC workshop meeting.
Appendices

Appendix A: Workshop Agenda

Intelligent Compaction for Soils and HMA
April 2–4, 2008
Sheraton Hotel, West Des Moines, Iowa

Sponsors: Iowa Department of Transportation and Iowa State University Earthworks Engineering Research Center (EERC)

Mission: Building upon current knowledge and experience, this workshop will provide and record a collaborative exchange of ideas for using design tools and intelligent compaction technology for measuring and documenting performance and quality characteristics of soils, aggregates, and hot mix asphalt that are verifiable and appropriate for use for contractor quality control and owner acceptance decisions.

Day 1—Wednesday, April 2, 2008

6:30 a.m. Breakfast and Registration

AM Moderator: Sandra Larson

8:00 Welcome—Sandra Larson, Iowa DOT

Why are we here?—Kevin Mahoney, Iowa DOT

Workshop mission—John Smythe, Iowa DOT

8:30 Intelligent Compaction for Soils and Aggregate—Dr. David White, ISU

9:45 Break

10:15 Intelligent Compaction for Hot Mix Asphalt and Update on the Intelligent Compaction Pooled Fund Project—Lee Gallivan, FHWA

11:15 NYS DOT Experience with Machine Control/Intelligent Construction—Dan Streett, NYS DOT

12:15 p.m. Lunch

PM Moderator: Max Grogg

1:00 New Earthworks Engineering Research Center at Iowa State University—Dr. David White

1:15 Minnesota Experience with Intelligent Compaction and In situ Testing Projects—Glenn Engstrom, Mn/DOT

2:30 Break

3:00 European Experience with Intelligent Compaction—François Chaignon, COLAS

4:15 Wrap-up, Review of the Workshop Mission, Tomorrow’s Session—Sandra Larson and John Smythe, Iowa DOT

Workshop attendees: dinner on your own
Day 2—Thursday, April 3, 2008

6:30 a.m. Breakfast

Moderator: Mike Kvach

7:30 Industry Equipment Manufacturer Presentations on Research and Development Efforts

9:15 Break

9:45 Charge to the Group—John Bartoszek, Payne & Dolan

10:15 Session 1—Breakout discussion groups (2 groups of each topic)

- IC for Soils and Aggregate
- IC for HMA
- Design tools, Education/training, Specifications

12:00 p.m. Lunch

1:00 Session 1 continues

1:45 Break

2:15 Session 2—Breakout discussion groups (2 groups of each topic)

- IC for Soils and Aggregate
- IC for HMA
- Design tools, Education/training, Specifications

4:45 Adjourn

Workshop attendees: dinner on your own

Day 3—Friday, April 4, 2008

6:30 a.m. Breakfast

Moderator: Max Grogg

7:30 Facilitators report on Day 2 discussions

- IC for Soils and Aggregate
- IC for HMA
- Design tools, Education/training, Specifications

9:00 Break

9:30 Panel Discussion and Questions—David White, Lee Gallivan, Dan Streett, Mn/DOT, John Bartoszek, Industry representatives

11:00 Wrapup and discussion of next steps—Sandra Larson, Iowa DOT

11:30 Adjourn
Appendix B: Workshop Attendees

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization and Position</th>
<th>Address</th>
<th>Phone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Adam</td>
<td>Statewide Operations Bureau Iowa Department of Transportation</td>
<td>800 Lincoln Way Ames, IA 50010</td>
<td>515-239-1333</td>
<td>John.adam@dot.iowa.gov</td>
</tr>
<tr>
<td>David Andrewski</td>
<td>Pavement Engineering Manager Iowa Department of Transportation</td>
<td>100 N Senate Ave Indianapolis, IN 46204</td>
<td>317-232-5452</td>
<td>Dandrewski@indot.in.gov</td>
</tr>
<tr>
<td>Bob Arndorfer</td>
<td>Foundation & Pavement Engr Supv Wisconsin Department of Transportation</td>
<td>3502 Kinsman Blvd Madison, WI 53704</td>
<td>608-246-7940</td>
<td>robert.arndorfer@dot.state.wi.us</td>
</tr>
<tr>
<td>Rick Barezinsky</td>
<td>Materials Field Engineer Kansas DOT</td>
<td>Eisenhower State Office Building Topeka, KS 66603-3754</td>
<td>700 SW Harrison St.</td>
<td>rickba@ksdot.org</td>
</tr>
<tr>
<td>Marc Beyer</td>
<td>Statewide HMA Specialist Michigan Department of Transportation</td>
<td>425 W. Ottawa St., P.O. Box 30050 Lansing, MI 48909</td>
<td>517-322-1020</td>
<td>beyerm@michigan.gov</td>
</tr>
<tr>
<td>Brenda Boell</td>
<td>Office of Local Systems Iowa Department of Transportation</td>
<td>800 Lincoln Way Ames, IA 50010</td>
<td>515-239-1437</td>
<td>Brenda.boell@dot.iowa.gov</td>
</tr>
<tr>
<td>Art Bolland</td>
<td>Minnesota Department of Transportation</td>
<td>2505 Transportation Rd Willmar, MN 56201</td>
<td>320-214-6349</td>
<td>Art.Bolland@dot.state.mn.us</td>
</tr>
<tr>
<td>Bryan Bradley</td>
<td>Office of Road Design Iowa Department of Transportation</td>
<td>800 Lincoln Way Ames, IA 50010</td>
<td>515-239-1862</td>
<td>Bryan.bradley@dot.iowa.gov</td>
</tr>
<tr>
<td>Dennis Bryant</td>
<td>Missouri Department of Transportation</td>
<td>105 W. Capitol Avenue Jefferson City, MO 65102</td>
<td>573-751-8608</td>
<td>Dennis.Bryant@modot.mo.gov</td>
</tr>
<tr>
<td>Gloria Burke</td>
<td>Field Engineer Asphalt Technology Division Maryland State Highway Administration</td>
<td>528 East Main Street Hancock, MD 21750</td>
<td>443-386-9266</td>
<td>GBurke@sha.state.md.us</td>
</tr>
<tr>
<td>Tom Cackler</td>
<td>Concrete Pavement Technology Center</td>
<td>2711 S Loop Dr Suite 4700 Ames, IA 50014</td>
<td>515-294-3230</td>
<td>tcackler@iastate.edu</td>
</tr>
<tr>
<td>Kirby Carpenter</td>
<td>Texana Machinery</td>
<td>4146 I-10 East San Antonio, TX 78219</td>
<td>210-333-8000</td>
<td>kcarpenter@texanamachinery.com</td>
</tr>
</tbody>
</table>
Appendices
Appendices
Harold von Quintus
2003 North Mays Street, Suite 105
Round Rock, TX 78664
512-218-5088
hvonquintus@aol.com

John Vu
Office of Construction
Iowa Department of Transportation
800 Lincoln Way
Ames, IA 50010
515-239-1280
John.vu@dot.iowa.gov

Steve Weidemann
Weidemann, Inc.
105 South Tracy
Dows, IA 50071
515-852-3802
weidemann@fbx.com

David J. White
Civil, Construction & Environmental Eng
476 Town Engr
Ames, IA 50011-3232
515-294-1463
djwhite@iastate.edu

Paul Wiegand
Ctr for Transportation Research & Education
2711 S Loop Dr, Ste 4700
Ames, IA 50011-1295
515-294-7082
pwiegand@iastate.edu

Chris Williams
Civil, Construction & Environmental Eng
482A Town Engr
Ames, IA 50011-3232
515-294-2140
rwilliams@iastate.edu

James Williams
Mississippi Department of Transportation
P.O. Box 1850
Jackson, MS 39215-1850
601-359-1796
jwilliams@mdot.state.ms.us

Appendices