Lane Reduction Warning Signage for Work Zones: Alternatives to the MUTCD W4-2 Lane Ends Symbol

John W. Shaw¹, Praveen Edara², Madhav V. Chitturi³, Carlos Sun⁴, Andrea R. Bill⁵, David A. Noyce⁶

Abstract

Many work zones require lane closures, and road users need to be notified of these closures through appropriate upstream signage. A literature review prepared for this study found several previous investigations indicating unacceptably low comprehension of the U.S. standard lane closure sign (designated in the MUTCD as W4-2) and similar signs used internationally. The W4-2 sign is also unsuitable for signing interior lane closures on roadways with three or more lanes. Driver comprehension of several alternative sign faces was tested using the ANSI Z535.3 process and a driving simulator. The testing suggests that an Upward Drop Arrow design is a promising alternative to the existing W4-2 sign for sites where two upstream lanes are reduced to one lane in the work zone. In addition, one-arrow-per-lane signs developed as Americanized versions of the Vienna Convention G12a sign template are a promising option for interior lane closures on multi-lane roadway segments. Field evaluation of the Upward Drop Arrow and Americanized G12 signs is recommended.

Keywords: Work Zones, Signage, Temporary Traffic Control, Manual on Uniform Traffic Control Devices

¹ Researcher & Local Road Safety Liaison, Institute for Transportation, Iowa State University, 2711 South Loop Drive, Suite 4700, Ames, IA 50010; (515) 294-4366; jwshaw@iastate.edu
² Associate Professor, Department of Civil & Environmental Engineering, University of Missouri – Columbia, C2640 Lafferre Hall, Columbia, MO 65211; (573) 882-1900; EdaraP@missouri.edu
³ Associate Researcher, Traffic Operations & Safety Laboratory, University of Wisconsin – Madison, 1415 Engineering Drive, Madison, WI 53707; (608) 890-2439; mchitturi@wisc.edu
⁴ Professor, Department of Civil & Environmental Engineering, University of Missouri – Columbia, E2505 Lafferre Hall, Columbia, MO 65211; (573) 884-6330; fax: 573-882-4784; CSun@missouri.edu
⁵ Researcher, Traffic Operations & Safety Laboratory, University of Wisconsin – Madison, 1415 Engineering Drive, Madison, WI 53707; (608) 890-3425; bill@wisc.edu.
⁶ Professor, Department of Civil & Environmental Engineering, University of Wisconsin – Madison, 1415 Engineering Drive, Madison, WI 53707; (608) 265-1882; danoyce@wisc.edu

The contents of this abstract reflect the views of the author(s), who are responsible for the facts and accuracy of the information presented herein. © 2017 by Iowa State University.