A Trilevel Optimization Model for Resilient Transportation Network Design

Mohammad Rahdar1, Lizhi Wang2, Guiping Hu3, Jing Dong4, and Xuesong Zhou5

Abstract

We propose a trilevel optimization model for transportation network design, which improves the resiliency of the network against uncertain disruptions. The middle and bottom levels are the network interdiction problem, in which we identify the worst-case scenario disruptions that could lead to a maximal cost to the transportation system. The top level takes the system perspective, which designs the optimal strategy to expand the existing transportation network so that it confronts the worst-case scenario disruptions in the most resilient manner. We also designed an iterative algorithm to solve the trilevel optimization model.

Keywords: Transportation network design—Trilevel optimization model—Resilient network

1 Iowa State University; 3010 Black Engineering, Ames, IA, 50011; phone (859) 338-8392; email: rahdar@iastate.edu
2 Iowa State University; 3016 Black Engineering, Ames, IA, 50011; phone (515) 294-1757; email: lzwang@iastate.edu
3 Iowa State University; 3014 Black Engineering, Ames, IA, 50011; phone (515) 294-8638; email: gphu@iastate.edu
4 Iowa State University; 350 Town Engineering, Ames, IA, 50011; phone (515) 294-3957; email: jingdong@iastate.edu
5 Arizona State University; School of Sustainable Engineering and the Built Environment, Tempe, Arizona 85287; phone (480) 965-5827; email: xzhou74@asu.edu

The contents of this abstract reflect the views of the author(s), who are responsible for the facts and accuracy of the information presented herein. © 2017 by Iowa State University.